Utilization of Electrolyte Solution in Nanotube Formation on Ti-6Al-4V Metal Alloy

Charlena Charlena, Tetty Kemala, Armi Wulanawati

Abstract


Formation of nanotube morphology on the surface of Ti-6Al-4V metal did not occur homogeneously, so when it was coated with hydroxyapatite, it did not merge well. One of the factor that affected the inhomogeneously formed nanotube was the utilization of electrolyte solution. The research has been done to observe the effect of electrolyte solution in the formation of nanotube morphology on the surface of Ti-6Al-4V metal alloy. Electrolyte solution that was used was ethylene glycol, HF, and NH4F with time variation of an hour, 2 hour, and 3 hour. Formation of nanotube morphology on the surface of Ti-6Al-4V metal alloy was done using anodization process. The result showed that in HF electrolyte solution which was anodized for an hour ɑ and β phase that composed Ti-6Al-4V metal alloy was formed, meanwhile when using electrolyte solution of ethylene glycol  + NH4F for 2 hours showed that there were pores that opened on Ti-6Al-4V metal alloy surface. Nanotube morphology on the surface of Ti-6Al-4V metal alloy was formed using electrolyte solution of ethylene glycol + NH4F which was anodized for 3 hours.

Full Text:

Full Text PDF

References


Eliaz N, Sridhar T, Mudali U, Raj B. 2005. Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic application. J Surface Engineering. 21(3): 238-242. doi: 10.1179/174329405X50091

Abdolldhi Z, Ziaee A, Afshar A. 2008.

Investigation of titanium oxide layer in

thermal-electrochemical anodizing of Ti6Al4V alloy. Journal Engineering and Technology. 44:523-526.

Robin A, Ribeiro M, Rosa J, Nakazato R, Silva M. 2014. Formation of TiO2 nanotube layer by anodization of titanium in ethylene glycol-H2O electrolyte. J of Surface Engineered Materials and Advanced Technology. 4: 123-130. doi: 10.4236/jsemat.2014.43016.

Badr N, Hadary A. 2007. Hydroxyapatite-Electroplated cp–Titanium Implant and Its Bone Integration Potentiality: An In Vivo Study. Journal Implan Dentistry. 16(3): 297-308.

Narayanan R, Lee HJ, Kwon TY, Kim KH. 2011. Anodic TiO2 nanotubes from

stirred baths: hydroxyapatite growth & osteoblast responses. J Materials Chemistry and Physics. 125(3):510-517.doi:10.1016/j.matchemphys.2010.10.024.

Li J and Min W. 2013. Influence of Anode Area and Electrode Gap on Morphology of TiO2 Nanotubes Array [jurnal]. Journal of Nanomaterial. doi: 10.1155/2013/534042

Yan Y, Zhang X, Li C, Huang Y, Ding Q, Pang X. 2015. Preparation and characterization of chitosan-silver/ hydroxyapatite composite coatings on TiO2 nanotube for biomedical applications [jurnal]. Elsivier: Applied Surface Science 332 (2015) 62–69. doi: 10.1016/j.apsusc.2015.01.136.

Macak JM, Tsuchiya H, Taveira L, Ghicov A, and Schmuki P. 2005. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J Biomed Mater Res A. 75(4):928-33. doi: 10.1002/jbm.a.30501.

Misriyani, Wahab AW, Taba P, and Gunlazuardi J. 2015. Aplikasi TiO2 Nanotube sebagai Fotoelektroda untuk Pencegahan Korosi Stainless Steel pada Variasi pH NaCl [jurnal]. Indones. J. Chem. 2015, 3, 242 - 248.

Alsammarraei AMI, Jaafar HI, Abed KN. 2014. The role of anodizing potentials

in making TiO2 nanotubes in (ethylene glycol / NH4F /water) electrolyte. J Archives of Applied Science Research. 6(2):115-121.

Ghicov, A.; Schmuki, P. 2009. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun., 20, 2791–2808.

Mohamed ERA & Rohani S. 2011. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode [jurnal]. Energy & Environmental Science, 4, 1065-1086. doi: 10.1039/C0EE00488J.

Macak JM, Hildebrand H, Marten-Jahns U and Schmuki P. 2008. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes [jurnal]. Journal of Electroanalytical Chemistry, 621, 254-266. doi: 10.1016/j.jelechem.2008.01.005.

Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, Zhu X, Cai W, Liao J, Zou L. 2008. The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J Mater Sci.43:1880–1884.

Purwanti A. 2012. Studi pembuatan TiO2 nanotube dengan teknik anodisasi pada plat titanium dan aplikasinya untuk sel surya tersensitasi zat warna (DSSC) [skripsi]. Depok (ID): Universitas Indonesia.

Filova E, Fojt J, Kryslova M, Moravec H, Joska L, and Bacakova L. 2015. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of saos-2 cells. Int J Nanomedicine. 10: 7145–7163. doi: 10.2147/IJN.S87474.

Pawelska A, Cydzik E. 2014. Morphological and chemical relationships in nanotubes formed by anodizing of Ti6Al4V alloy. J. Advances In Materials Science. 14(4):12-20.




DOI: http://dx.doi.org/10.24845/ijfac.v3.i1.01

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License