Preparation of Zirconium Nitride supported on SiO2 Catalyst for Vegetable Oil Conversion
Abstract
Hydrocracking of crude palm oil (CPO) to produce biofuels was conducted over zirconium nitride supported on SiO2 (SiO2/ZrN) catalyst. SiO2/ZrN was prepared by nitriding the SiO2/Zr at 600 °C for 3 hrs under NH3 gas on the cylindrical reactor. SiO2/ZrN exhibited a surface acidity of 0.7132 mmol pyridine g‒1 with a surface area of 96 m2 g‒1, forming predominant mesopores on the catalyst. EDS-mapping analysis showed that the ZrN species exhibited a highly distributed on the SiO2 surface. CPO hydrocracking was conducted at a temperature of 500 °C for 1 hr, with a CPO flow rate of 0.02 L min‒1 and H2 flow rate of 0.03 L min‒1. The study revealed that the SiO2/ZrN successfully afforded a CPO conversion up to 94.98 wt.%, a liquid yield of 50.40 wt.%, with a low residue and coke formation. This catalyst promoted high selectivity towards bio-jet up to 72.95 wt.%.
Full Text:
Full Text PDFReferences
M. Ameen, M. T. Azizan, S. Yusup, A. Ramli, and M. Yasir, “Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production,” Renew. Sustain. Energy Rev., vol. 80, no. May, pp. 1072–1088, 2017, doi: 10.1016/j.rser.2017.05.268.
F. A. A. Twaiq, A. R. Mohamad, and S. Bhatia, “Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals,” Fuel Process. Technol., vol. 85, no. 11, pp. 1283–1300, 2004, doi: 10.1016/j.fuproc.2003.08.003.
M. Ahmad, R. Farhana, A. A. A. Raman, and S. K. Bhargava, “Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline,” Energy Convers. Manag., vol. 119, pp. 352–360, 2016, doi: 10.1016/j.enconman.2016.04.069.
T. Li, J. Cheng, R. Huang, W. Yang, J. Zhou, and K. Cen, “Hydrocracking of palm oil to jet biofuel over different zeolites,” Int. J. Hydrogen Energy, vol. 41, no. 47, pp. 21883–21887, 2016, doi: 10.1016/j.ijhydene.2016.09.013.
G. D. Alisha, W. Trisunaryanti, and A. Syoufian, “Hydrocracking of Waste Palm Cooking Oil into Hydrocarbon Compounds over Mo Catalyst Impregnated on SBA-15,” Silicon, vol. 14, no. 5, pp. 2309–2315, 2022, doi: 10.1007/s12633-021-01035-1.
A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110.
H. Hartati, W. Trisunaryanti, R. R. Mukti, I. A. Kartika, P. B. D. Firda, S. D. Sumbogo, D. Prasetyoko, and H. Bahruji, “Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel,” J. Energy Inst., vol. 93, no. 6, pp. 2238–2246, 2020, doi: 10.1016/j.joei.2020.06.006.
A. Aneu, R. A. Pratika, Hasanudin, S. Gea, K. Wijaya, and W. C. Oh, “Silica-Based Catalysts for Biodiesel Production: A Brief Review,” Silicon, no. 0123456789, 2023, doi: 10.1007/s12633-023-02403-9.
A. Nadia, K. Wijaya, I. I. Falah, S. Sudiono, and A. Budiman, “Self-regeneration of mnodisperse hierarchical Porous NiMo/Silica Catalyst Induced by NaHCO3 for Biofuel Production,” Waste and Biomass Valorization, vol. 13, no. 2, pp. 2335–2347, 2022, doi: 10.1007/s12649-021-01634-4.
H. Hasanudin, W. R. Asri, Z. Fanani, S. J. Adisti, F. Hadiah, R. Maryana, M. Al Muttaqii, Z. Zhu, and N. T. Machado, “Facile Fabrication of SiO2/Zr Assisted with EDTA Complexed-Impregnation and Templated Methods for Crude Palm Oil to Biofuels Conversion via Catalytic Hydrocracking,” Catalysts, vol. 12, no. 12, p. 1522, 2022, doi: 10.3390/catal12121522.
H. Hasanudin, W. R. Asri, M. Said, P. T. Hidayati, W. Purwaningrum, N. Novia, and K. Wijaya, “Hydrocracking optimization of palm oil to bio-gasoline and bio-aviation fuels using molybdenum nitride-bentonite catalyst,” RSC Adv., vol. 12, no. 26, pp. 16431–16443, 2022, doi: 10.1039/D2RA02438A.
B. Liu, B. He, H. Q. Peng, Y. Zhao, J. Cheng, J. Xia, J. Shen, T. W. Ng, X. Meng, C. S. Lee, and W. Zhang, “Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electrocatalyst for Hydrogen Evolution,” Adv. Sci., vol. 5, no. 8, pp. 1–7, 2018, doi: 10.1002/advs.201800406.
Z. Xing, Q. Li, D. Wang, X. Yang, and X. Sun, “Self-supported nickel nitride as an efficient high-performance three-dimensional cathode for the alkaline hydrogen evolution reaction,” Electrochim. Acta, vol. 191, pp. 841–845, 2016, doi: 10.1016/j.electacta.2015.12.174.
F. Gillot, J. Oró-Solé, and M. R. Palacín, “Nickel nitride as negative electrode material for lithium ion batteries,” J. Mater. Chem., vol. 21, no. 27, pp. 9997–10002, 2011, doi: 10.1039/c0jm04144k.
S. H. Gage, D. A. Ruddy, S. Pylypenko, and R. M. Richards, “Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites,” Catal. Today, vol. 306, pp. 9–15, 2018, doi: 10.1016/j.cattod.2016.12.016.
H. Hasanudin, W. R. Asri, I. S. Zulaikha, C. Ayu, A. Rachmat, F. Riyanti, F. Hadiah, R. Zainul, and R. Maryana, “Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite,” RSC Adv., vol. 12, no. 34, pp. 21916–21925, 2022, doi: 10.1039/d2ra03941a.
S. Zhao, J. Song, R. Xu, L. Nie, J. Ma, C. Deng, X. Cheng, X. Zhao, S. Hao, and J. Li, “Fabrication of zirconium nitride nanopowder with a high specific surface area by introducing fructose as a double-function additive,” Ceram. Int., vol. 47, no. 16, pp. 23267–23274, 2021, doi: 10.1016/j.ceramint.2021.05.039.
Y. Yuan, J. Wang, S. Adimi, H. Shen, T. Thomas, R. Ma, J. P. Attfield, and M. Yang, “Zirconium nitride catalysts surpass platinum for oxygen reduction,” Nat. Mater., 2019, doi: 10.1038/s41563-019-0535-9.
B. Boonrod, C. Prapainainar, P. Narataruksa, A. Kantama, W. Saibautrong, K. Sudsakorn, T. Mungcharoen, and P. Prapainainar, “Evaluating the environmental impacts of bio-hydrogenated diesel production from palm oil and fatty acid methyl ester through life cycle assessment,” J. Clean. Prod., vol. 142, pp. 1210–1221, 2017, doi: 10.1016/j.jclepro.2016.07.128.
H. Hasanudin, W. R. Asri, K. Tampubolon, F. Riyant, W. Purwaningrum, and K. Wijaya, “Dehydration Isopropyl Alcohol to Diisopropyl Ether over Molybdenum Phosphide Pillared Bentonite,” Pertanika J. Sci. Technol., vol. 30, no. 2, pp. 1739–1754, 2022, doi: 10.47836/pjst.30.2.47.
H. Chen, W. Wang, J. C. Martin, A. J. Oliphant, P. A. Doerr, J. F. Xu, K. M. DeBorn, C. Chen, and L. Sun, “Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass,” ACS Sustain. Chem. Eng., vol. 1, no. 2, pp. 254–259, 2013, doi: 10.1021/sc300115r.
Q. U. Putri, H. Hasanudin, and W. R. Asri, “Production of levulinic acid from glucose using nickel phosphate ‑ silica catalyst,” React. Kinet. Mech. Catal., vol. 136, no. 1, pp. 287–309, 2023, doi: 10.1007/s11144-022-02334-3.
A. Aneu, K. Wijaya, and A. Syoufian, “Silica-Based Solid Acid Catalyst with Different Concentration of H2SO4 and Calcination Temperature: Preparation and Characterization,” Silicon, vol. 13, no. 7, pp. 2265–2270, 2021, doi: 10.1007/s12633-020-00741-6.
S. Kumar, S. Bhunia, and A. K. Ojha, “Effect of calcination temperature on phase transformation, structural and optical properties of sol-gel derived ZrO2 nanostructures,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 66, pp. 74–80, 2015, doi: 10.1016/j.physe.2014.09.007.
F. Barzegari, M. Rezaei, M. Kazemeini, F. Farhadi, and A. R. Keshavarz, “Effect of rare-earth promoters (Ce, La, Y and Zr) on the catalytic performance of NiO-MgO-SiO2 catalyst in propane dry reforming,” Mol. Catal., vol. 522, no. February, p. 112235, 2022, doi: 10.1016/j.mcat.2022.112235.
L. Hauli, K. Wijaya, and A. Syoufian, “Fuel production from LDPE-based plastic waste over chromium supported on sulfated zirconia,” Indones. J. Chem., vol. 20, no. 2, pp. 422–429, 2020, doi: 10.22146/ijc.45694.
E. C. Lovell, J. Scott, and R. Amal, “Ni-SiO2 catalysts for the carbon dioxide reforming of methane: Varying support properties by flame spray pyrolysis,” Molecules, vol. 20, no. 3, pp. 4594–4609, 2015, doi: 10.3390/molecules20034594.
H. Liu, Z. Chang, J. Fu, and Z. Hou, “A CuZn-BTC derived stable Cu/ZnO@SiO2 catalyst for ethanol dehydrogenation,” Appl. Catal. B Environ., vol. 324, no. September 2022, p. 122194, 2023, doi: 10.1016/j.apcatb.2022.122194.
M. Sakti La Ore, K. Wijaya, W. Trisunaryanti, W.D. Saputri, E. Heraldy, N. W. Yuwana, P. L. Hariani, A. Budiman, and S. Sudiono, “The synthesis of SO4/ZrO2and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104205, 2020, doi: 10.1016/j.jece.2020.104205.
T. Imyen, W. Wannapakdee, J. Limtrakul, and C. Wattanakit, “Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes,” Fuel, vol. 254, no. April, p. 115593, 2019, doi: 10.1016/j.fuel.2019.06.001.
A. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis, and A. A. Lappas, “Effect of Lewis and BrØnsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media,” Appl. Catal. A Gen., vol. 555, no. 2010, pp. 75–87, 2018, doi: 10.1016/j.apcata.2018.01.029.
M. Kaviani, M. Rezaei, S. Mehdi Alavi, and E. Akbari, “High coke resistance Ni-SiO2@SiO2 core-shell catalyst for biogas dry reforming: Effects of Ni loading and calcination temperature,” Fuel, vol. 330, no. August, p. 125609, 2022, doi: 10.1016/j.fuel.2022.125609.
H. Hasanudin, W. R. Asri, A. Mara, M. Al Muttaqii, R. Maryana, N. Rinaldi, S. Sagadevan, Q. Zhang, Z. Fanani, and F. Hadiah, “Enhancement of catalytic activity on crude palm oil hydrocracking over SiO2/Zr assisted with potassium hydrogen phthalate,” 2023, doi: 10.1021/acsomega.3c01569.
DOI: http://dx.doi.org/10.24845/ijfac.v8.i2.98
Refbacks
- There are currently no refbacks.
Editorial Office:
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License