Coating of Nanotube Ti6Al4V Alloy with Hydroxyapatite-Chitosan-Polyvinyl Alcohol Composite

Charlena Charlena, Tetty Kemala, Ravena Ravena

Abstract


Hydroxyapatite (HAp) can be applied as a bone implant material. HAp was composited with chitosan and polyvinyl alcohol (PVA) and coated to Ti6Al4V to improve its biocompatibility. The composite HAp-chitosan-PVA coated to anodized and unanodized Ti6Al4V. Modification of the Ti6Al4V surface by anodizing was done using a 20 V voltage. The Ti6Al4V metal alloy was coated with a composite using the electrophoretic deposition (EPD) method with a voltage of 80 V. The coated composites in Ti6Al4V nanotubes and non-nanotubes were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), corrosion test with potentiostat, and in vitro bioactivity test with Atomic Absorption Spectroscopy (AAS). The XRD results showed a distinctive peak indicating that the composite comprises HAp and Ti. The SEM Ti6Al4V nanotube results show a pore size of 24 nm. The FTIR results show that there were functional groups of HAp, chitosan, and PVA. The corrosion rate on Ti6Al4V nanotubes without coating was greater than with coating. The In vitro bioactivity test showed that the decrease of Ca2+ Ti6Al4V nanotube concentration was faster compared to non-nanotube Ti6Al4V.


Full Text:

Full Text PDF

References


Prakasam, M., Locks, J., Salma-Ancane, K., Loca, D., Largeteau, A., Berzina-Cimdina. L. (2015). Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater. 6: 1099-1140. doi: 10.3390/jfb6041099.

Szatkowski, T., Kolodziejczak-Radzimska, A., Zdarta, J, Scwarc-Rzepka, K., Paukszta, K., Wysokowski, M., Ehrlich, H., Jesionowski. T. (2015). Synthesis and characterization of hydroxyapatite/chitosan composites. Physicochem Probl Miner Process. 51(2): 575-585. doi: 10.5277/ppmp150217.

Croisier, F., Jérôme. C. (2013). Chitosan-based biomaterials for tissue engineering. J Eur Pol 49: 780-792. doi:10.1016/j.eurpolymj.2012.12.009.

Islam, A., Yasin. T. (2012). Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend. J Carb Pol. 88: 1055-1060. doi: 10.1016/j.carbpol.2012.01.070.

Darwis, D., Warastuti. Y. (2008). Sintesis dan karakterisasi komposit hidroksiapatit (HA) sebagai graft tulang sintetik. JIAIR. 4(2): 143-153. ISSN 1907-0322.

Ulasevich, S.A., Kulak, A.I., Poznyak, S.K., Karpushenkov, S.A., Lisenkovd, A.D., Skorb. E.V. (2016). Deposition of hydroxyapatite– incorporated TiO2 coating on titanium using plasma electrolytic oxidation coupled with electrophoretic deposition. RSC Adv. 6: 62540-62544. doi: 10.1039/c6ra10560b.

Kaczmarek-Pawelska, A., Krasicka-Cydzik. E. (2014). Morphological and chemical relationships in nanotubes formed by anodizing of Ti6Al4V alloy. Adv Mat Sci. 14(4): 12-20. doi: 10.2478/adms‐20140017.

Seuss, S., Lehmann, M., Boccaccini. A.R. (2014). Alternating current electrophoretic deposition of antibacterial bioactive glass-kitosan composite coatings. Int. J. Mol Sci. 15:12231-12242. doi:10.3390/ijms150712231.

Indira, K., Mudali, U.K., Nishimura, T., Rajendran. N. (2015). A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J Bio Tribo Corros. 1(28): 1-22. doi: 10.1007/s40735015-0024-x.

Sobieszczyk. S. (2009). Self-organized nanotubular oxide layers on Ti and Ti alloys. Adv Mat Sci. 2(20): 25-41. doi: 10.2478/v10077-009-0008-y.

Regonini, D., Bowen, C.R., Jaroenworaluck, A., Stevens. R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mat Sci Eng. 74: 377-406. doi: 10.1016/j.mser.2013.10.001.

Ghicov, A., Tsuchiya, H., Macak, J.M., Schmuki. P. (2005). Titanium oxide nanotubes prepared in phosphate electrolytes. J Elecom. (7): 505-509. doi: 10.1016/j.elecom.2005.03.007.

Saharudin, K.A., Sreekantan, S., Aziz, S.N.Q., Hazan, R., Lai, C.W., Mydin, R.B., Mat. I. (2012). Surface modification and bioactivity of anodic Ti6Al4V alloy. J Nanosci Nanotechnol 12(20): 1-10. doi: 10.1166/jnn.2012.7115.

Firnanelty, Sugiarti, S., Charlena. (2017). Synthesis of Hap-Chitosan-PVA Composite as Injectable Bone Substitute Material. Rasayan Journal Chemistry, 10 (2): 570-576 http://dx.doi.org/10.7324/RJC.2017.1021465

Venkatesan, J., Kim. S.K. Chitosan composites for bone tissue engineering-an overview. Mar Drugs. 8: 2252-2266. (2010). doi: 10.3390/md8082252.

Abdeltawab, A.A., Shoeib, M.A., Mohamed. S.G. (2011). Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. J Surf Coat. 206: 43-50. doi: 10.1016/j.surfcoat. 2011.06.034.

Riszki, T.I., Harmami. (2015). Pengaruh suhu terhadap kualitas coating (pelapisan) stainless steel tipe 304 dengan kitosan secara elektroforesis. J Sains Seni ITS. 4(1): c25-c28.

Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky. I. (2010). Electrophoretic deposition of biomaterials. J R Soc Interface. 7: s581-s613. doi:10.1098/rsif.2010.0156.focus.

Santos, M.H., de Oliveira, M., Souzal, P.F., Mansur, H.S., Vasconcelos. W.L. (2004). Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Materials Research Bulletin. 7(4): 625-630. doi: 10.1590/S1516-14392004000400017.

Wang, Z.,Dong, C., Yang, S., Zhang, D., Xiaou, K., Li. X. (2016). Facile incorporation of hydroxyapatite onto an anodized ti surface via a mussel inspired polydopamine coating. J. App Surf Sci. doi: 10.1016/j.apsusc. 2016. 03.094.

Dinh, T. M. T., Nguyen, T. T., Pham, T. N., Nguyen, T. P., Nguyen, T. T. T., Hoang, T., Grossin, D., Bertrand, G., Drouet. C. (2016). Electrodeposition of HAp coatings on Ti6Al4V alloy and its electrochemical behavior in simulated body fluid solution. Adv Nat Sci Nanosci Nanotechnocol. 7: 1-9. doi: 10.1088/2043-6262/7/2/025008.

Shahba, R. M. A., Ghannem, W., El-Shenawy, A. E., Ahmed, A. S. I., Tantawy. S. M. (2011). Corrosion and inhibition of Ti-6Al-4V alloy in NaCl solution. Int. J. Electrochem. Sci. 6: 5499-5509.

Gu, Y. W., Khor, K. A., Cheang. P. (2003). In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomat. 24: 1603-1611. doi: 10.1016/S0142-9612(02)00573-2.




DOI: http://dx.doi.org/10.24845/ijfac.v7.i2.58

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License