The Influence of Hydrogen Flow Rate and Humidifier Temperature on Performance of a PEMFC with Ti-Co/C Catalyst

Nurmalina Adhiyanti, Dedi Rohendi, Muhammad Prima Utama, Nirwan Syarif, Addy Rachmat, Dwi Hawa Yulianti, Normah Normah

Abstract


This study explores the effect of hydrogen flow rate and humidifier temperature on the performance of the Membrane Electrode Assembly (MEA) using Ti-Co/C catalyst at the cathode and Pt/C at the anode in a single-cell Proton Exchange Membrane Fuel Cell (PEMFC). MEAs were fabricated by the spraying method and characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to determine their electrochemical surface area (ECSA) and conductivity. The results showed that the optimized ECSA value reached 8.38 cm2/g, and the electrical conductivity was 3.76 × 10-8 S/cm. The best performance was achieved at a hydrogen flow rate of 100 mL/min and room temperature humidification. Under the hydrogen flow rate test, the maximum power density reached 0.364 mW/cm2, while in the humidifier temperature variation, a maximum power density of 0.375 mW/cm2  was obtained at a current density 2.4 mA/cm2. These findings suggest that Ti-Co/C is a promising low-cost catalyst alternative to Pt and that operational conditions play a critical role in MEA performance


Full Text:

Full text PDF

References


J. Chen, Z. Ou, H. Chen, S. Song, K. Wang, and Y. Wang, “Recent developments of nanocarbon based supports for PEMFCs electrocatalysts,” Chinese J. Catal., vol. 42, no. 8, pp. 1297–1326, 2021.

B. H. Lim et al., “Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review,” Chinese J. Chem. Eng., vol. 33, pp. 1–16, 2021.

N. Adhiyanti, D. Rohendi, N. Syarif, and A. Rachmat, “Preparation and Characterization of Ti-Co/C catalyst for PEMFC Cathode,” Indones. J. Fundam. Appl. Chem., vol. 6, no. 3, pp. 109–114, Oct. 2021, doi: 10.24845/ijfac.v6.i3.109.

W. Yan et al., “Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (aC: H/TiC) films prepared on titanium bipolar plates in PEMFCs,” Diam. Relat. Mater., vol. 120, p. 108628, 2021.

I. Gatto, A. Saccà, R. Pedicini, E. Passalacqua, and A. Carbone, “Evaluation of titanium oxide introduction in the electrode structure for portable PEMFC applications,” Int. J. Hydrogen Energy, vol. 46, no. 54, pp. 27687–27699, Aug. 2021, doi: 10.1016/j.ijhydene.2021.05.200.

D. Rohendi, A. Rachmat, and N. Syarif, “Fabrication and Characterization of Pt-Co/C Catalyst for Fuel Cell Electrode,” J. Phys. Conf. Ser., vol. 1095, no. 1, p. 012007, Sep. 2018, doi: 10.1088/1742-6596/1095/1/012007.

J. Zhao, H. Liu, and X. Li, “Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells,” Electrochem. Energy Rev., vol. 6, no. 1, p. 13, Dec. 2023, doi: 10.1007/s41918-022-00175-1.

M. A. Ehsan, A. S. Hakeem, and A. Rehman, “Synergistic effects in bimetallic Pd–CoO electrocatalytic thin films for oxygen evolution reaction,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-71389-w.

R. Kumar and K. A. Subramanian, “Enhancement of efficiency and power output of hydrogen fuelled proton exchange membrane (PEM) fuel cell using oxygen enriched air,” Int. J. Hydrogen Energy, vol. 48, no. 15, pp. 6067–6075, 2023.

B. Seo and H. K. Suh, “The Impact of Flow Rate Variations on the Power Performance and Efficiency of Proton Exchange Membrane Fuel Cells : A Focus on Anode Flooding Caused by Crossover Effect and Concentration Loss,” Energies, vol. 18, no. 3084, pp. 1–27, 2025, doi: https://doi.org/10.3390/en18123084.

R. E. Rosli et al., “Study of hydrogen consumption by control system in proton exchange membrane fuel cell,” Malaysian J. Anal. Sci., vol. 20, no. 4, pp. 901–912, 2016.

Y. Chang, Y. Qin, Y. Yin, J. Zhang, and X. Li, “Humidification strategy for polymer electrolyte membrane fuel cells – A review,” Appl. Energy, vol. 230, pp. 643–662, 2018, doi: 10.1016/j.apenergy.2018.08.125.

T. Ma, K. Wang, Q. Zhou, W. Lin, M. Cong, and W. Jia, “Numerical study on humidification performance of fuel cell test platform humidifier,” Energies, vol. 12, no. 20, 2019, doi: 10.3390/en12203839.

Y. Li and M. J. Janik, “Recent progress on first-principles simulations of voltammograms,” Curr. Opin. Electrochem., vol. 14, pp. 124–132, 2019, doi: 10.1016/j.coelec.2019.01.005.

N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” J. Chem. Educ., vol. 95, no. 2, pp. 197–206, Feb. 2018, doi: 10.1021/acs.jchemed.7b00361.

Y. Ashraf Gandomi, D. S. Aaron, Z. B. Nolan, A. Ahmadi, and M. M. Mench, “Direct measurement of crossover and interfacial resistance of ion-exchange membranes in all-vanadium redox flow batteries,” Membranes (Basel)., vol. 10, no. 6, p. 126, 2020, doi: 10.3390/membranes10060126.

A. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy─A Tutorial,” ACS Meas. Sci. Au, vol. 3, no. 3, pp. 162–193, Jun. 2023, doi: 10.1021/acsmeasuresciau.2c00070.

D. Rohendi, N. Syarif, D. H. Yulianti, and N. R. Anjeli, “Effect of Humidifier Temperature and Hydrogen Flow Rate on MEA Performance of PEMFC Using Pt/C and Pd-Co/C Catalyst,” MALAYSIAN J. Chem., vol. 25, no. 5, pp. 223–229, Dec. 2023, doi: 10.55373/mjchem.v25i5.223.

D. Hawa Yulianti, D. Rohendi, N. Syarif, and A. Rachmat, “Performance Test of Membrane Electrode Assembly in DAFC using Mixed Methanol and Ethanol Fuel with Various Volume Comparison,” Indones. J. Fundam. Appl. Chem., vol. 4, no. 3, pp. 139–142, Oct. 2019, doi: 10.24845/ijfac.v4.i3.139.

M. G. Kim and Y. H. Choi, “Electrocatalytic Properties of Co3O4 Prepared on Carbon Fibers by Thermal Metal–Organic Deposition for the Oxygen Evolution Reaction in Alkaline Water Electrolysis,” Nanomaterials, vol. 13, no. 6, 2023, doi: 10.3390/nano13061021.

X. Zhu et al., “Elucidating the roles of oxygen defects-rich TiOxNy shell in Ti-based electrocatalyst for enhanced oxygen reduction reaction,” Fundam. Res., vol. 5, no. 3, pp. 1134–1143, 2025, doi: 10.1016/j.fmre.2023.07.006.

S. Li, R. Gu, R. Luo, X. Cheng, and X. Li, “Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents,” J. Polym. Eng., vol. 44, no. 7, pp. 449–456, Aug. 2024, doi: 10.1515/polyeng-2024-0022.

A. Kulikovsky, “A Fast Low-Current Model for Impedance of a PEM Fuel Cell Cathode at Low Air Stoichiometry,” J. Electrochem. Soc., vol. 164, no. 9, pp. F911–F915, 2017, doi: 10.1149/2.0561709jes.

S. M. Sharaf, “Smart conductive textile,” in Advances in Functional and Protective Textiles, Elsevier, 2020, pp. 141–167. doi: 10.1016/B978-0-12-820257-9.00007-2.

V. M. Truong, N. B. Duong, C.-L. Wang, and H. Yang, “Effects of Cell Temperature and Reactant Humidification on Anion Exchange Membrane Fuel Cells,” Materials (Basel)., vol. 12, no. 13, p. 2048, Jun. 2019, doi: 10.3390/ma12132048.

D. Zhu, Y. Yang, F. Pei, and T. Ma, “High-precision identification of polarization processes of distribution of relaxation times by polarization curve model for proton exchange membrane fuel cell,” Energy Convers. Manag., vol. 268, p. 115994, 2022, doi: 10.1016/j.enconman.2022.115994.

J. Zhao, Z. Tu, and S. H. Chan, “Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review,” J. Power Sources, vol. 488, p. 229434, 2021.

S. Rukmani Krishnan, D. Verstraete, and F. Aguey‐Zinsou, “Performance of Non‐Precious Metal Electrocatalysts in Proton‐Exchange Membrane Fuel Cells: A Review,” ChemElectroChem, vol. 11, no. 17, Sep. 2024, doi: 10.1002/celc.202400299.

A. Jose, S. Bekal, and S. T. Revankar, “Effect of oxidant quantity and humidification temperature on performance of PEMFC with twin inlet and twin outlet flow field,” Front. Energy Res., vol. 12, no. June, pp. 1–13, 2024, doi: 10.3389/fenrg.2024.1390956.

D. Rohendi, E. H. Majlan, A. B. Mohamad, W. R. W. Daud, A. A. H. Kadhum, and L. K. Shyuan, “Effects of temperature and backpressure on the performance degradation of MEA in PEMFC,” Int. J. Hydrogen Energy, vol. 40, no. 34, pp. 10960–10968, 2015, doi: 10.1016/j.ijhydene.2015.06.161.


Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License