Effect of Hydrogen Flow Rate on MEA Performance with a Three-Catalyst-Layer Pt/C Configuration

Dwi Hawa Yulianti, Dedi Rohendi, Rahmadi Budiman, Dera Okta Firanda, Addy Rachmat, Nyimas Febrika Sya'baniah

Abstract


An essential component in Proton Exchange Membrane Fuel Cells (PEMFCs) is the Membrane Electrode Assembly (MEA), which facilitates the electrochemical reaction between hydrogen and oxygen to generate electrical energy. This study examines the effect of varying hydrogen gas flow rates on the performance and durability of a Pt/C-based MEA. The MEA used in this research measures 6.5 cm × 30 cm with a catalyst loading of 2 mg/cm². The electrode is constructed in three layers of catalysts to maximize interfacial contact within the catalyst layer. The tested hydrogen flow rates were 100, 200, 300, and 400 mL/min. Performance evaluation was conducted through polarization (I–V) and power (I–P) curve measurements. The results indicated optimal performance at a 200 mL/min flow rate, with a maximum power density of 3.563 mW/cm² and a current density of 10.256 mA/cm². Durability testing was carried out under a constant current of 2 A for 12 hours and showed a voltage drop of 24.35% after 10 hours of operation. Electrochemical characterization using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), and Linear Sweep Voltammetry (LSV) yielded an Electrochemical Surface Area (ECSA) of 1.477 × 10⁻⁵ m²/g, electrical conductivity of 3.218 × 10⁻⁴ S/cm, and an electric charge of 4.2 × 10⁻⁶ C.


Full Text:

Full-text PDF

References


M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges,” Renew. Sustain. Energy Rev., vol. 146, no. March, p. 111180, 2021, doi: 10.1016/j.rser.2021.111180.

Y. Wei, Y. Xing, X. Zhang, Y. Wang, J. Cao, and F. Yang, “A Review of Sealing Systems for Proton Exchange Membrane Fuel Cells,” World Electr. Veh. J., vol. 15, no. 8, 2024, doi: 10.3390/wevj15080358.

B. C. Tashie-Lewis and S. G. Nnabuife, “Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy - A Technology Review,” Chem. Eng. J. Adv., vol. 8, no. July, p. 100172, 2021, doi: 10.1016/j.ceja.2021.100172.

H. Pourrahmani, A. Yavarinasab, M. Siavashi, M. Matian, and J. Van herle, “Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: From theory to the current challenges and real-time fault diagnosis methods,” Energy Rev., vol. 1, no. 1, p. 100002, 2022, doi: 10.1016/j.enrev.2022.100002.

D. Rohendi et al., “Effect of Humidifier Temperature and Hydrogen Flow Rate on MEA Performance of PEMFC Using Pt/C and Pd-Co/C Catalyst,” Malaysian J. Chem., vol. 25, no. 5, pp. 223–229, 2023, doi: 10.55373/mjchem.v25i5.223.

C. E. Rustana et al., “The effect of voltage and electrode types on hydrogen production from the seawater electrolysis process,” J. Phys. Conf. Ser., vol. 2019, no. 1, 2021, doi: 10.1088/1742-6596/2019/1/012096.

M. Tawalbeh, S. Alarab, A. Al-Othman, and R. M. N. Javed, “The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review,” Fuels, vol. 3, no. 3, pp. 449–474, 2022, doi: 10.3390/fuels3030028.

F. Cao et al., “Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells,” Molecules, vol. 28, no. 2, pp. 1–20, 2023, doi: 10.3390/molecules28020773.

L. Y. Zhu, Y. C. Li, J. Liu, J. He, L. Y. Wang, and J. Du Lei, “Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications,” Pet. Sci., vol. 19, no. 3, pp. 1371–1381, 2022, doi: 10.1016/j.petsci.2021.11.004.

M. Sauermoser, N. Kizilova, B. G. Pollet, and S. Kjelstrup, “Flow Field Patterns for Proton Exchange Membrane Fuel Cells,” Front. Energy Res., vol. 8, no. February, pp. 1–20, 2020, doi: 10.3389/fenrg.2020.00013.

S. Hernandez-Aldave and E. Andreoli, “Fundamentals of gas diffusion electrodes and electrolysers for carbon dioxide utilisation: Challenges and opportunities,” Catalysts, vol. 10, no. 6, pp. 1–34, 2020, doi: 10.3390/CATAL10060713.

P. C. Okonkwo et al., “Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review,” Int. J. Hydrogen Energy, vol. 46, no. 29, pp. 15850–15865, 2021, doi: 10.1016/j.ijhydene.2021.02.078.

J. Zhao, H. Liu, and X. Li, Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells, vol. 6, no. 1. Springer Nature Singapore, 2023.

D. Hawa Yulianti, D. Rohendi, N. Syarif, and A. Rachmat, “Performance Test of Membrane Electrode Assembly in DAFC using Mixed Methanol and Ethanol Fuel with Various Volume Comparison,” Indones. J. Fundam. Appl. Chem., vol. 4, no. 3, pp. 139–142, 2019, doi: 10.24845/ijfac.v4.i3.139.

N. Yollanda et al., “Variation of Membrane Electrode Assembly Catalyst Layer in Unitized Regenerative Fuel Cell,” J. Electrochem., vol. 31, no. 4, 2025, doi: 10.61558/2993-074X.3540.

S. Eris, Z. Daşdelen, and F. Sen, “Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells,” J. Colloid Interface Sci., vol. 513, pp. 767–773, 2018, doi: 10.1016/j.jcis.2017.11.085.

F. Zhang et al., “Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides,” J. Mater. Sci. Technol., vol. 105, pp. 122–130, 2022, doi: 10.1016/j.jmst.2021.07.028.

T. Kim et al., “(How to read CV for batteries) Applications of voltammetry in lithium ion battery research,” J. Electrochem. Sci. Technol., vol. 11, no. 1, pp. 14–25, 2020.

L. Chen, R. Lin, S. Tang, D. Zhong, and Z. Hao, “Structural design of gas diffusion layer for proton exchange membrane fuel cell at varying humidification,” J. Power Sources, vol. 467, no. May, p. 228355, 2020, doi: 10.1016/j.jpowsour.2020.228355.

K. Talukdar, M. A. Ripan, T. Jahnke, P. Gazdzicki, T. Morawietz, and K. A. Friedrich, “Experimental and numerical study on catalyst layer of polymer electrolyte membrane fuel cell prepared with diverse drying methods,” J. Power Sources, vol. 461, no. April, p. 228169, 2020, doi: 10.1016/j.jpowsour.2020.228169.

K. Wang et al., “Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers,” Green Energy Environ., vol. 9, no. 9, pp. 1336–1365, 2024, doi: 10.1016/j.gee.2023.11.002.

A. Pipertzis, J. Xu, N. Abdou, A. Martinelli, L. E. Asp, and J. Swenson, “Ionic and electronic conductivity in structural negative electrodes,” Electrochim. Acta, vol. 512, no. October 2024, p. 145501, 2025, doi: 10.1016/j.electacta.2024.145501.

M. Butori, B. Eriksson, N. Nikolić, C. Lagergren, G. Lindbergh, and R. Wreland Lindström, “Ionic conductivity and hydrogen crossover for IT-PEMFCs: Influence of pressure, temperature, relative humidity and reinforcement,” Int. J. Hydrogen Energy, vol. 95, no. June, pp. 1158–1170, 2024, doi: 10.1016/j.ijhydene.2024.06.286.




DOI: http://dx.doi.org/10.24845/ijfac.v10.i2.146

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License