Recent Update on Various Ion Doped Nanoparticles Applied in Biomedical: Challenges and Future Perspective

Aldi Herbanu, Sjaikhurrizal El Muttaqien, Muhammad Artha Jabatsudewa Maras

Abstract


In the last several years, there have been a considerable increase in the number of use of nanoparticles (NPs) in dental application. For application and study, a wide range of ion doped NPs are accessible. The NPs differ from conventional materials in term of their distinctive structures and properties. However, researchers don't always understand how these NPs with their unique properties work. The NPs foundation in material science as well as benefits and drawbacks are discussed, primarily based on a review of the most cited scientific papers in the international peer-reviewed journal sciences. To meet the requisite topic of the study, 22 titles from MEDLlNE (PubMed) databases and 145 titles from the Scopus database were screened. It was determined from the included papers that this review takes into account several facets of the preparation of different ions for doping dental NPs and their therapeutic uses of doped hydroxyapatite (HAP). Understanding the physical, chemical, and biological aspects of NPs may help us to comprehend their benefits, drawbacks, and particular advantages. Although NPs offer great potential for the future, they do not necessarily have the best qualities, particularly in the biomedical field.

Keywords: Ions-doped; bone remodeling; doped hydroxyapatite; nanoparticles; regenerative therapy


Full Text:

Full-text PDF

References


A. Besinis, T. De Peralta, C. J. Tredwin and R. D. Handy. 2015. ACS Nano. 9: 2255–2289.

A. Bigi, E. Boanini, C. Capuccini, M. Gazzano. 2007. Inorg Chim Acta. 360: 1009.

A. V. Lyasnikova, O. A. Dudareva,V. N. Lyasnikov, O. A. Markelova, and I. P. Grishina. 2018. Glass and Ceramics. 75, 163.

A.E. Porter, C.M. Botelho, M.A. Lopes, J.D. Santos, S.M. Best, W. 2004. Bonfield. J Biomed Mater Res. 69: 670.

A.P. Mould, S.K. Akiyama, M.J. Humphries. 1995. J Biol Chem. 270, 26270.

Adams, L. K., D. Y. Lyon, and P. J. Alvarez. 2006. Comparative EcoToxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions. Water Research. 19(40): 3527–3532.

Aina V, Lusvardi G, Annaz B, et al. 2012. Magnesium- and strontium-cosubstituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med. 23(12): 2867–2879.

B. Bakin, T. Koc Delice, U. Tiric, I. Birlik, A. Ak Azem. 2016. Surf Coat Technol. 301: 29.

Barakat NAM, Khil MS, Omran AM, Sheikh FA, Kim HY. 2009. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol. 209(7): 3408–3415.

Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R. 2002. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials. 23(23): 4503–4513.

Bohner M. 2009. Silicon-substituted calcium phosphates – A critical view. Biomaterials. 30(32): 6403–6406.

Bürgers, R., A. Eidt, R. Frankenberger, M. Rosentritt, H. Schweikl, G. Handel, et al. 2009. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Archives of Oral Biology. 6(54): 595– 601.

C. Capuccini, P. Torricelli, E. Boanini, M. Gazzano, R. Giardino, A. Bigi. 2009. J Biomed Mater Res A. 89: 594.

C. Dehghanian, N. Aboudzadeh, M. A. Shokrgozr. 2018. Mater Chem Phys. 203: 27.

Carlisle EM. 1981. Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int. 33(1): 27–34.

Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Feng QL, Yu B. 2012. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater. 20(12):1–6.

Cox SC, Jamshidi P, Grover LM, Mallick KK. 2014. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C Mater Biol Appl. 35: 106–114.

Doremus RH. 1992. Bioceramics. J Mater Sci. 27(2): 285–297.

Dorozhkin SV. 1997. Surface reactions of apatite dissolution. J Colloid Interf Sci. 191(2): 489–497.

Dutta SR, Passi D, Singh P, Bhuibhar A. 2015. Ceramic and nonceramic hydroxyapatite as a bone graft material: A brief review. Ir J Med Sci. 184(1): 101–106.

E. Boanini, P. Torricelli, F. Sima, E. Axente, M. Fini, I.N. Mihailescu, A. Bigi. 2018. J Inorg Biochem. 1: 183.

E. Gyorgy, P. Toricelli, G. Socol, M. Iliescu, I. Mayer, I.N. Mihailescu, A. Bigi, J. Werckman. 2004. J Biomed Mater Res A. 71: 353.

E.S. Thian , T. Konishi, Y. Kawanobe, P.N. Lim, C. Choong, B. Ho, M. Aizawa. 2013. J Mater Sci Mater Med. 24: 437.

Garbo et al, 2020. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. International Journal of Nanomedicine. 15: 1037–1058.

Gibson IR, Best SM, Bonfield W. 2002. Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. J Am Ceram Soc. 85(11): 2771–2777.

Goga F, Forizs E, Avram A, et al. 2017. Synthesis and thermal treatment of hydroxyapatite doped with magnesium, zinc and silicon. Rev Chim (Bucharest). 68(6): 1193–1200.

Grynpas MD, Marie PJ. 1990. Effects of low doses of strontium on bone quality and quantity in rats. Bone. 11(5): 313–319.

H-P. Teng, H-Y Lin, Y-H. Huang, F-H. Lu. 2018. Surf Coat Technol. 350: 1112.

H. M. Xiong. 2013. Adv Mater. 25: 5329–5335.

Hamouda, I. M. 2012. Current perspectives of nanoparticles in Medical and dental biomaterials. Journal of Biomedical Materials Research. 26: 143–151.

Hayashi K, Uenoyama K, Mashima T, Sugioka Y. 1994. Remodelling of bone around hydroxyapatite and titanium in experimental osteoporosis. Biomaterials. 15(1): 11–16.

Hulbert SF, Hench LL, Forbers D, Bowman LS. 1982. History of bioceramics. Ceram Int. 8(4): 131–140.

I. Izquierdo-Barba, A. Asenjo, L. Esquivias, M Vallet-Regí, Eur. 2003. J Inorg Chem. 8: 1608

J.W. Park, Y.J. Kim, J.H. Jang. 2011. Appl Surf Sci. 258: 977.

Jiaxing Jiang, Limei Li, Kuankuan Li, Gen Li, Fu You, Yi Zuo, Yubao Li & Jidong Li. 2016. Antibacterial nano-hydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. Journal of Biomaterials Science, Polymer Edition. 10: 1-29.

Kaufman HW, Kleinberg I. 1979. Studies on the incongruent solubility of hydroxyapatite. Calcif Tissue Intern. 27(12): 143–151.

Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry. 7(12): 908–931.

Kim HW, Kim HE, Knowles JC. 2004. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials. 25(17): 3351–3358.

Kim HW, Koh YH, Li LH, Lee S, Kim HE. 2004. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by solgel method. Biomaterials. 25(13): 2533–2538.

Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. 2009. Silk film biomaterials for cornea tissue engineering. Biomaterials. 30(7): 1299–1308.

Li SH, De Wijn JR, Layrolle P, de Groot K. 2002. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J Biomed Mater Res. 61(1): 109–120.

Loca D, Sokolova M, Locs J, Smirnova A, Irbe Z. 2015. Calcium phosphate bone cements for local vancomycin delivery. Mater Sci Eng C Mater Biol Appl. 49: 106–113.

M. C. Matesanz, J. Linares, M. Oñaderra, M.J. Feito, F. J. Martínez-Vázquez, S. Sánchez-Salcedo, D. Arcos, M. Teresa Portolés, M. Vallet-Regí. 2015. Colloids and Surfaces B. Biointerfaces. 133: 304.

M. Dadsetan, T. Guda, M.B. Runge, D. Mijares, R.Z. LeGeros, J. P. LeGeros, D.T. Silliman, L. Lu, J.C. wenke, P.R.Brown Baer, M.J. Yaszemski. 2015. Acta Biomater. 18: 9.

M. Jelinek, T. Kocourek, K. Jurek, J. Remsa, J. Miksovsky, M. Weisasrová. 2010. Appl Phys. 101: 615.

M. Yamaguchi, H. Oishi, Y. Suketa. 1987. Biochem Pharmacol. 36: 4007.

M. Yamaguchi. 1998. J Trace Elem Exp Med. 11: 119.

M.A. Surmeneva, M.V. Chaikina, V.I. Zaikovskiy, V.F. Pichugin, O. Prymak, M. Epple. et al. 2013. Surf Coat Technol. 218: 39.

M.A. Surmeneva, T.M. Mukhametkaliyev, A.I. Tyurin, A.D. Teresov, N.N. Koval, T.S. Pirozhkova, I.A. Shuvarin, A.V. Shuklinov, A.O. Zhigachev, C. Oehr, R.A. Surmenev. 2015. Surf Coat Technol. 275: 176.

Manocha S, Joshi P, Patel B, Manocha LM. 2011. Synthesis and characterization of hydroxyapatite nanoparticles using sol-gel method. Eurasian Chem Techn J. 13(1–2): 85–88.

Muthusamy et al. 2021. hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: physiochemical, microstructural and biological characterization. Materials Science & Engineering C. 126: 112-149.

N.D. Ravi, R. Balu, T.S. Sampath Kumar. 2012. J Am Ceram Soc. 95: 2700.

O. Gokcekaya, T.J. Webster, K. Ueda, T. Narushima, C. Ergun. 2017. Mater Sci Eng C. 77: 555.

Oltean-Dan D, Dogaru GB, Tomoaia-Cotisel M, et al. 2019. Enhancement of bone consolidation using high frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation. Int J Nanomed. 14: 5799–5816.

P.J. Marie. 2005. Curr Opin Pharmacol. 5: 633.

Pietak AM, Reid JW, Stott MJ, Sayer M. 2007. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 28(28): 4023–4032.

Punia, S. K., P. Nadig, and V. Punia. 2011. An in vitro assessment of apical microleakage in root canals obturated with gutta-flow, resilon, thermafil and lateral condensation: A stereomicroscopic study. Journal of Conservative Dentistry: JCD. 2(14): 173-177.

R. Agnihotri, S. Gaur and S. Albin. 2019. Biol Trace Elem Res. 1–19.

R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, J. Jansen. 2012. Coatings. 2: 95.

R. S. Chaughule. 2018. Dental applications of nanotechnology. Springer. 277.

R.A. Surmenev. 2012. Surf Coat Technol. 206: 2035.

R.K. Rude, F.R. Singer, H.E. Gruber. 2009. J Am Coll Nutr. 28: 131.

R.O. Darouiche. 1999. Clin Infect Dis. 29: 137.

Ratnayake JTB, Mucalo M, Dias GJ. 2017. Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res. 105(5): 1285–1299.

S. Chen, R. Yuan, Y. Chai and F. Hu. 2013. Microchim Acta. 180: 15–32.

S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, C. Christiansen. 2001. Bone. 28: 446.

Samuel, U. and J. P. Guggenbichler. 2004. Prevention of catheterrelated infections: The potential of a new nano-silver impregnated catheter. International Journal of Antimicrobial agents. 23: 75–78.

Shepherd JH, Shepherd DV, Best SM. 2012. Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med. 23(10): 2335–2347.

Simon V, Albon C, Simon S. 2008. Silver release from hydroxyapatite self-assembling calciumphosphate glasses. J Non Cryst Solids. 354: 1751-1755.

Sommerfeldt DW, Rubin CT. 2001. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 10(2): 86–95.

Stevens MM. 2008. Biomaterials for bone tissue engineering. Mater Today. 11(5): 18–25.

Stipniece L, Narkevica I, Salma-Ancane K. 2017. Low-temperature synthesis of nanocrystalline hydroxyapatite: effect of Mg and Sr content. J Am Ceram Soc. 100(4): 1697–1706.

Szurkowska K, Zgadzaj A, Kuras M, Kolmas J. 2018. Novel hybrid material based on Mg2+ and SiO4 4- co-substituted nano-hydroxyapatite, alginate and chondroitin sulphate for potential use in biomaterials engineering. Ceram Int. 44(15): 18551–18559.

T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, and E. B. Slamovich. 2004. Biomaterials. 25: 2111.

T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios. 2000. Biomaterials. 21: 1803.

Tampieri A, Sprio S, Ruffini A, Celotti G, Lesci IG, Roveri N. 2009. From wood to bone: Multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem.19: 4973.

Tejas Barot, Deepak Rawtani*, and Pratik Kulkarni. 2021. Nanotechnology-based materials as emerging trends for dental applications. Rev Adv Mater Sci. 60: 173–189.

Tomoaia G, Mocanu A, Vida-Simiti I, et al. 2014. Silicon effect on the composition and structure of nano calcium phosphates. In vitro biocompatibility to human osteoblasts. Mater Sci Eng C Mater Biol Appl. 37: 37–47.

Tomoaia G, Soritau O, Tomoaia-Cotisel M, et al. 2013. Scaffolds made of nanostructured phosphates, collagen and chitosan for cell culture. Powder Technol. 238: 99–107.

V. Staníc, S. Dimitrijevíc, J. Antíc-Stankovíc, M. Mitríc, B. Jokíc, I.B. Plecas, S. Raicevic. 2010. Appl Surf Sci. 256: 6083.

W. Chen S. Oh A.P. Ong N. Oh Y. Liu H.S. Courtney M. Appleford J.L. Ong. 2007. J Biomed Mater Res. 82: 899.

Wang Q, Tang P, Ge X, et al. 2018. Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity. Appl Surf Sci. 462: 118–126.

Weir, M. D., L. C. Chow, and H. H. Xu. 2012. Remineralization of demineralized enamel via calcium phosphate nanocomposite. Journal of Dental Research. 10(91): 979–984.

Wu X, Li J, Wang L, et al. 2010. The release properties of silver ions from Ag-nHA/TiO2/PA66 antimicrobial composite scaffolds. Biomed Mater. 5: 1-7.

Wu, D., W. Fan, A. Kishen, J. L. Gutmann, and B. Fan. 2014. Evaluation of the antibacterial eflcacy of silver nanoparticles against enterococcus faecalis biofilm. Journal of Endodontics. 2(40): 285–290.

X. Wu, W. Lin, D. Li, H. Guo, P. Li, Y. Fan. 2019. RSC Adv. 9: 15013.

Y. Bayon, M. Bohner, D. Eglin, P. Procter, R.G. Richards, J. Weber, D.I. Zeugolis. 2016. J Mater Sci Mater Med. 27: 144.

Y. Li, S. Shen, L. Zhu, S. Cai, Y. Jiang, R. Ling, S. Jiang, Y. Lin, S. Hua, G. Xu. 2019. J Ceram Soc Jap. 127: 158.

Y. Yan, X. Zhang, Y. Huang, Q. Ding, X. Pang. 2014. Appl Surf Sci. 314: 348.

Y.K. Chen, X.B. Zheng, Y.T. Xie, H. Ji, C.X. Ding, H.W. Li, et al. 2010. Surf Coat Technol. 205: 1892.

Yamaguchi M, Goto M, Uchiyama S, Nakagawa T. 2008. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem. 312(1–2): 157–166.

Yamaguchi M, Yamaguchi R. 1986. Action of zinc on bone metabolism in rats. Increases in alkaline-phosphatase activity and DNA content. Biochem Pharmacol. 35(5): 773–777.

Yang F, Murugan R, Wang S, Ramakrishna S. 2005. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 26(15): 2603–2610.

Yoshida, K., M. Tanagawa, and M. Atsuta. 1999. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. Journal of Biomedical Materials Research A. 4(47): 516–522.

Yoshida, K., M. Tanagawa, S. Matsumoto, T. Yamada, and M. Atsuta. 1999. Antibacterial activity of resin composites with silvercontaining materials. European Journal of Oral Sciences. 4(107): 290–296.

Younesi M, Javadpour S, Bahrololoom ME. 2011. Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash. J Mater Eng Perform. 20(8): 1484–1490.

Yu, J., H. Yang, K. Li, J. Lei, L. Zhou, and C. Huang. 2016. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: An in vitro study. Journal of Dentistry. 50: 21–29.

Zhang N, Zhai D, Chen L, Zou Z, Lin K, Chang J. 2014. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater Sci Eng C Mater Biol Appl. 37: 286–291.




DOI: http://dx.doi.org/10.24845/ijfac.v10.i2.126

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License