Harnessing Electrochemical Processes for Enhanced Struvite Crystallization: A Comprehensive Review

Eko Ariyanto, Eka Sri Yusmartini, Gusmiatun Gusmiatun, Fatimah Fatimah, Mitayani Purwoko

Abstract


The recovery of nutrients from contaminated water and wastewater can effectively mitigate both the nutrient burden on water resources and the associated environmental issues affecting aquatic ecosystems. This approach presents a valuable solution towards achieving environmental and societal sustainability. Consequently, struvite crystallization technology has emerged as a promising method for nutrient recovery, as the resulting precipitate can be recycled as a natural fertilizer. This review aims to elucidate the characteristics of struvite and provide insight into the fundamental process of crystallization. Furthermore, it comprehensively discusses the various variables that influence struvite crystallization, with a special focus on its application in urine-contaminated water using electrochemical methods. The review also highlights the advantageous on environmental and economic aspects. In addition, the limitations of struvite crystallization technology are examined, and future research prospects are explored, particularly in the context of electrochemical techniques which offer innovative solutions for controlled nutrient extraction. Ultimately, this work serves as a foundational resource for the future utilization of struvite crystallization technology in nutrient recovery, in response to the escalating environmental challenges and depletion of natural resources.

Keywords: Struvite formation, electrochemical process, magnesium anode, struvite crystallization, natural fertilizer


Full Text:

Full-text PDF

References


cell,” Bioresour Technol, vol. 107, pp. 110–115, Mar. 2012, doi: 10.1016/j.biortech.2011.12.038.

Y. Zhang, E. Desmidt, A. Van Looveren, L. Pinoy, B. Meesschaert, and B. Van Der Bruggen, “Phosphate separation and recovery from wastewater by novel electrodialysis,” Environ Sci Technol, vol. 47, no. 11, pp. 5888–5895, Jun. 2013, doi: 10.1021/es4004476.

Y. Feng, L. Yang, J. Liu, and B. E. Logan, “Electrochemical technologies for wastewater treatment and resource reclamation,” Sep. 01, 2016, Royal Society of Chemistry. doi: 10.1039/c5ew00289c.

Y. Guo et al., “Selection of anode materials and optimization of operating parameters for electrochemical water descaling,” Sep Purif Technol, vol. 261, Apr. 2021, doi: 10.1016/j.seppur.2021.118304.

L. Wang et al., “Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition,” Science of the Total Environment, vol. 804, Jan. 2022, doi: 10.1016/j.scitotenv.2021.150101.

N. Krishnamoorthy, C. Nzediegwu, X. Mao, H. Zeng, B. Paramasivan, and S. X. Chang, “Biochar seeding properties affect struvite crystallization for soil application,” Soil and Environmental Health, vol. 1, no. 2, Jun. 2023, doi: 10.1016/j.seh.2023.100015.

Y. Cai et al., “Study on removal of phosphorus as struvite from synthetic wastewater using a pilot-scale electrodialysis system with magnesium anode,” Jul. 15, 2020, Elsevier B.V. doi: 10.1016/j.scitotenv.2020.138221.

C. Weng, M. M. Hinkle, and W. A. Mitch, “Electrochemical Dechlorination of Municipal Wastewater Effluent,” Environ Sci Technol, vol. 57, no. 3, pp. 1425–1432, Jan. 2023, doi: 10.1021/acs.est.2c02481.

L. Kékedy-Nagy, M. Abolhassani, L. F. Greenlee, and B. G. Pollet, “An Electrochemical Study of Ammonium Dihydrogen Phosphate on Mg and Mg Alloy Electrodes,” Electrocatalysis, vol. 12, no. 3, pp. 251–263, May 2021, doi: 10.1007/s12678-021-00646-x.

Y. Liu, Y. Y. Deng, Q. Zhang, and H. Liu, “Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies,” Feb. 25, 2021, Elsevier B.V. doi: 10.1016/j.scitotenv.2020.143901.

N. N. Woldeyohannis and A. F. Desta, “Fate of antimicrobial resistance genes (ARG) and ARG carriers in struvite production process from human urine,” Journal of Environmental Science and Health, Part A, vol. 58, no. 9, pp. 783–792, Jul. 2023, doi: 10.1080/10934529.2023.2235246.

W. Luo, Y. Fang, L. Song, and Q. Niu, “Production of struvite by magnesium anode constant voltage electrolytic crystallisation from anaerobically digested chicken manure slurry,” Environ Res, vol. 214, Nov. 2022, doi: 10.1016/j.envres.2022.113991.

X. Li, X. Zhao, X. Zhou, and B. Yang, “Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical-decomposition of nature magnesite,” J Clean Prod, vol. 292, Apr. 2021, doi: 10.1016/j.jclepro.2021.126039.

D. Debroas and C. Siguret, “Viruses as key reservoirs of antibiotic resistance genes in the environment,” ISME Journal, vol. 13, no. 11, pp. 2856–2867, Nov. 2019, doi: 10.1038/s41396-019-0478-9.

A. Gul and E. Gurbuz, “Microorganisms and antibiotic susceptibilities isolated from urine cultures,” Archivio Italiano di Urologia e Andrologia, vol. 92, no. 2, pp. 146–148, Jun. 2020, doi: 10.4081/aiua.2020.2.146.

M. Ronteltap, M. Maurer, and W. Gujer, “The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine,” Water Res, vol. 41, no. 9, pp. 1859–1868, 2007, doi: 10.1016/j.watres.2007.01.026.

M. Liu et al., “Detection of pathogens and antimicrobial resistance genes directly from urine samples in patients suspected of urinary tract infection by metagenomics nanopore sequencing: A large‐scale multi‐centre study,” Clin Transl Med, vol. 13, no. 4, Apr. 2023, doi: 10.1002/ctm2.824.

S. Tao, H. Chen, N. Li, T. Wang, and W. Liang, “The Spread of Antibiotic Resistance Genes In Vivo Model,” 2022, Hindawi Limited. doi: 10.1155/2022/3348695.

M. Harris, T. Fasolino, N. J. Davis, D. Ivankovic, and N. Brownlee, “Multiplex Detection of Antimicrobial Resistance Genes for Rapid Antibiotic Guidance of Urinary Tract Infections,” Microbiol Res (Pavia), vol. 14, no. 2, pp. 591–602, Jun. 2023, doi: 10.3390/microbiolres14020041.

E. Ariyanto, D. Kharismadewi, M. Mardwita, and S. Muryanto, “Kinetics of Struvite Crystals Formation through Adsorption and Crystallization Using Zeolite Modification,” Iraqi Journal of Science, vol. 65, no. 1, pp. 1–15, 2024, doi: 10.24996/ijs.2024.65.1.1.

M. I. H. Bhuiyan, D. S. Mavinic, and R. D. Beckie, “Nucleation and growth kinetics of struvite in a fluidized bed reactor,” J Cryst Growth, vol. 310, no. 6, pp. 1187–1194, Mar. 2008, doi: 10.1016/j.jcrysgro.2007.12.054.

S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, and C. Ra, “Design and optimization of fluidized bed reactor operating conditions for struvite recovery process from swine wastewater,” Processes, vol. 8, no. 4, Apr. 2020, doi: 10.3390/PR8040422.

S. Shin et al., “Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions,” Chem Sci, vol. 9, no. 9, pp. 2480–2488, Mar. 2018, doi: 10.1039/c7sc03996d.

L. Wang et al., “Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: Feasibility and mechanism,” J Environ Manage, vol. 330, Mar. 2023, doi: 10.1016/j.jenvman.2022.117143.

Z. Zhang, L. She, J. Zhang, Z. Wang, P. Xiang, and S. Xia, “Electrochemical acidolysis of magnesite to induce struvite crystallization for recovering phosphorus from aqueous solution,” Chemosphere, vol. 226, pp. 307–315, Jul. 2019, doi: 10.1016/j.chemosphere.2019.03.106.

H. Li et al., “A model of extracellular polymeric substances on crystal growth and morphogenesis of struvite: Effects of sodium alginate,” Powder Technol, vol. 380, pp. 80–88, Mar. 2021, doi: 10.1016/j.powtec.2020.11.037.

F. Wang et al., “Phosphate Recovery from Swine Wastewater by a Struvite Precipitation Electrolyzer,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-45085-3.

Z. L. Ye et al., “Fractionating magnesium ion from seawater for struvite recovery using electrodialysis with monovalent selective membranes,” Chemosphere, vol. 210, pp. 867–876, Nov. 2018, doi: 10.1016/j.chemosphere.2018.07.078.

O. D. Ogundele, D. A. Oyegoke, and T. E. Anaun, “Exploring the Potential and Challenges of Electrochemical Processes for Sustainable Waste Water Remediation and Treatment,” Acadlore Transactions on Geosciences, vol. 2, no. 2, pp. 80–93, Jun. 2023, doi: 10.56578/atg020203.

R. D. Cusick, M. L. Ullery, B. A. Dempsey, and B. E. Logan, “Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell,” Water Res, vol. 54, pp. 297–306, May 2014, doi: 10.1016/j.watres.2014.01.051.

C. C. Wang, X. D. Hao, G. S. Guo, and M. C. M. van Loosdrecht, “Formation of pure struvite at neutral pH by electrochemical deposition,” Chemical Engineering Journal, vol. 159, no. 1–3, pp. 280–283, May 2010, doi: 10.1016/j.cej.2010.02.026.

M. M. Rahman, M. A. M. Salleh, U. Rashid, A. Ahsan, M. M. Hossain, and C. S. Ra, “Production of slow release crystal fertilizer from wastewaters through struvite crystallization - A review,” Arabian Journal of Chemistry, vol. 7, no. 1, pp. 139–155, Jan. 2014, doi: 10.1016/j.arabjc.2013.10.007.

E. Ariyanto, T. K. Sen, and H. M. Ang, “The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation,” Advanced Powder Technology, vol. 25, no. 2, pp. 682–694, 2014, doi: 10.1016/j.apt.2013.10.014.

A. Moulessehoul, D. Gallart-Mateu, D. Harrache, S. Djaroud, M. de la Guardia, and M. Kameche, “Conductimetric study of struvite crystallization in water as a function of pH,” J Cryst Growth, vol. 471, pp. 42–52, Aug. 2017, doi: 10.1016/j.jcrysgro.2017.05.011.

D. J. Kruk, M. Elektorowicz, and J. A. Oleszkiewicz, “Struvite precipitation and phosphorus removal using magnesium sacrificial anode,” Chemosphere, vol. 101, pp. 28–33, 2014, doi: 10.1016/j.chemosphere.2013.12.036.

N. A. Robinson Junior, S. X. Wu, J. Zhu, and Y. Zhan, “Optimization of a dual-chamber electrolytic reactor with a magnesium anode and characterization of struvite produced from synthetic wastewater,” Environ Technol, vol. 44, no. 25, pp. 3911–3925, Nov. 2023, doi: 10.1080/09593330.2022.2077131.

Y. H. Liu, S. Kumar, J. H. Kwag, J. H. Kim, J. D. Kim, and C. S. Ra, “Recycle of electrolytically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wastewater,” J Hazard Mater, vol. 195, pp. 175–181, Nov. 2011, doi: 10.1016/j.jhazmat.2011.08.022.

Z. Yan, M. Cai, and P. K. Shen, “Low temperature formation of porous graphitized carbon for electrocatalysis,” J Mater Chem, vol. 22, no. 5, pp. 2133–2139, Feb. 2012, doi: 10.1039/c1jm14765j.

K. Hoppstock, R. P. H. Garten, P. Tschopel, and G. Tolg, “Purification of reagents and separation of element traces by electrodeposition onto a graphite tube cathode,” Fresenius J Anal Chem, vol. 343, no. 9–10, pp. 778–781, 1992, doi: 10.1007/BF00633566.

D. Prando, A. Brenna, F. M. Bolzoni, M. V. Diamanti, M. Pedeferri, and M. Ormellese, “Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium,” J Appl Biomater Funct Mater, vol. 15, no. 1, pp. e19–e24, Jan. 2017, doi: 10.5301/jabfm.5000344.

Y. Zhang, K. Gu, K. Zhao, H. Deng, and C. Hu, “Enhancement of struvite generation and anti-fouling in an electro-AnMBR with Mg anode-MF membrane module,” Water Res, vol. 230, Feb. 2023, doi: 10.1016/j.watres.2022.119561.

L. Kékedy-Nagy, J. P. Moore, M. Abolhassani, F. Attarzadeh, J. A. Hestekin, and L. F. Greenlee, “The Passivating Layer Influence on Mg-Based Anode Corrosion and Implications for Electrochemical Struvite Precipitation,” J Electrochem Soc, vol. 166, no. 12, pp. E358–E364, 2019, doi: 10.1149/2.0901912jes.

G. P. Bhoi, K. S. Singh, and D. A. Connor, “Optimization of phosphorus recovery using electrochemical struvite precipitation and comparison with iron electrocoagulation system,” Water Environment Research, vol. 95, no. 4, 2023, doi: 10.1002/wer.10847.

R.-F. Chen et al., “Effect of Organic Substances on Nutrients Recovery by Struvite Electrochemical Precipitation from Synthetic Anaerobically Treated Swine Wastewater,” Membranes (Basel), vol. 11, no. 8, 2021, doi: 10.3390/membranes.

Z. Anari et al., “Pressure-driven membrane nutrient preconcentration for down-stream electrochemical struvite recovery,” Sep Purif Technol, vol. 309, 2023, doi: 10.1016/j.seppur.2022.122907.

H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, and F. Gao, “Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology,” J Clean Prod, vol. 127, pp. 302–310, Jul. 2016, doi: 10.1016/j.jclepro.2016.04.002.

Y. H. Song, S. Hidayat, A. J. Effendi, and J. Y. Park, “Simultaneous hydrogen production and struvite recovery within a microbial reverse-electrodialysis electrolysis cell,” Journal of Industrial and Engineering Chemistry, vol. 94, pp. 302–308, Feb. 2021, doi: 10.1016/j.jiec.2020.10.043.

Y. Tai et al., “Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors,” Science of the Total Environment, vol. 843, 2022, doi: 10.1016/j.scitotenv.2022.156914.

Q. Zhao et al., “Comparison study on enhancement of phosphorus recovery from low-strength wastewater treated with different magnesium-based electrochemical constructed wetland,” J Environ Manage, vol. 345, 2023, doi: 10.1016/j.jenvman.2023.118840.

H. Hou et al., “Biogas and phosphorus recovery from waste activated sludge with protocatechuic acid enhanced Fenton pretreatment, anaerobic digestion and microbial electrolysis cell,” Science of the Total Environment, vol. 704, 2020, doi: 10.1016/j.scitotenv.2019.135274.

Y. Takabe, M. Fujiyama, Y. Yamasaki, and T. Masuda, “Influences of electrode distance and electrolysis time on phosphorus precipitation and composition during electrolysis of anaerobic digestion effluent,” Science of the Total Environment, vol. 803, p. 150114, 2022, doi: 10.1016/j.scitotenv.2021.150114.

F. Liu, H. Moustafa, and Z. He, “Simultaneous recovery of nitrogen and phosphorus from actual digester centrate in an electrochemical membrane system,” Resour Conserv Recycl, vol. 203, 2024, doi: 10.1016/j.resconrec.2024.107463.

X. Zhou and Y. Chen, “An integrated process for struvite electrochemical precipitation and ammonia oxidation of sludge alkaline hydrolysis supernatant,” Environmental Science and Pollution Research, vol. 26, no. 3, pp. 2435–2444, Jan. 2019, doi: 10.1007/s11356-018-3667-6.

N. Bektaş, H. Akbulut, H. Inan, and A. Dimoglo, “Removal of phosphate from aqueous solutions by electro-coagulation,” J Hazard Mater, vol. 106, no. 2–3, pp. 101–105, Jan. 2004, doi: 10.1016/j.jhazmat.2003.10.002.

H. Li, Q.-Z. Yao, Z.-M. Dong, T.-L. Zhao, G.-T. Zhou, and S.-Q. Fu, “Controlled Synthesis of Struvite Nanowires in Synthetic Wastewater,” ACS Sustain Chem Eng, vol. 7, no. 2, pp. 2035–2043, Jan. 2019, doi: 10.1021/acssuschemeng.8b04393.

A. Siciliano, C. Limonti, G. M. Curcio, and R. Molinari, “Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater,” Sep. 01, 2020, MDPI. doi: 10.3390/su12187538.

N. Krishnamoorthy et al., “Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review,” J Environ Chem Eng, vol. 9, no. 5, Oct. 2021, doi: 10.1016/j.jece.2021.105579.

H. Huang, C. Xu, and W. Zhang, “Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology,” Bioresour Technol, vol. 102, no. 3, pp. 2523–2528, Feb. 2011, doi: 10.1016/j.biortech.2010.11.054.

B. Li et al., “Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors,” Oct. 15, 2019, Academic Press. doi: 10.1016/j.jenvman.2019.07.025.

A. K. Luther, J. Desloover, D. E. Fennell, and K. Rabaey, “Electrochemically driven extraction and recovery of ammonia from human urine,” Water Res, vol. 87, pp. 367–377, Dec. 2015, doi: 10.1016/j.watres.2015.09.041.

A. J. Ward, K. Arola, E. Thompson Brewster, C. M. Mehta, and D. J. Batstone, “Nutrient recovery from wastewater through pilot scale electrodialysis,” Water Res, vol. 135, pp. 57–65, May 2018, doi: 10.1016/j.watres.2018.02.021.

J. Jermakka, S. Freguia, M. Kokko, and P. Ledezma, “Electrochemical system for selective oxidation of organics over ammonia in urine,” Environ Sci (Camb), vol. 7, no. 5, pp. 942–955, May 2021, doi: 10.1039/d0ew01057j.

L. Song, Z. Li, G. Wang, Y. Tian, and C. Yang, “Supersaturation control of struvite growth by operating pH,” J Mol Liq, vol. 336, Aug. 2021, doi: 10.1016/j.molliq.2021.116293.


Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License