Potential of Dimethyl Sulfoxide Modified Kaolin and Cetyl Trimethylammonium Bromide as Amoxycillin Adsorben

Gatut Ari Wardani, Ratih Damayanti, Mochamad Fathurohman, Taufik Hidayat, Estin Nofiyanti

Abstract


The large use of amoxicillin allows this antibiotic to enter the environment in large quantities and cause pollution. The adsorption technique can be used as a method to remove amoxicillin contaminants in wastewater by utilizing kaolin as an adsorbent. This study aims to determine the characteristics of kaolin as an adsorbent and determine the ability of kaolin to adsorb amoxicillin. Kaolin was activated with hydrochloric acid and modified using Dimethyl sulfoxide (DMSO) and cetyl trimethylammonium bromide (CTAB). The results showed that the characteristics of DMSO and CTAB-modified kaolin showed a new peak which was an O-H bending vibration in functional group analysis using FTIR. X-ray diffraction results show that the distance between planes in the kaolin structure is larger. Meanwhile, the results of the SEM analysis showed that the surface morphology of kaolin had a higher level of crystallinity than before which proved an increase in the adsorption capacity of kaolin. The adsorption kinetics follows the Santosa kinetic equation model with an adsorption rate of 0.004 min-1 and an equilibrium constant value of 0.007 L.mol-1. The adsorption isotherm test follows the Freundlich isotherm equation model with an adsorption constant value of 561.694 L.mg-1 and an empirical constant value of 0.270. 

Keywords: Antibiotics, Adsorption, Batch, Isotherms, Kinetics

Full Text:

Full-text PDF

References


J. Imanipoor, M. Mohammadi, M. Dinari, and M. R. Ehsani, “Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53(Al) metal-organic framework adsorbent,” J. Chem. Eng. Data, vol. 66, no. 1, pp. 389–403, 2021.

L. El Azzouzi, S. El Aggadi, M. Ennouhi, A. Ennouari, O. K. Kabbaj, and A. Zrineh, “Removal of the Amoxicillin antibiotic from aqueous matrices by means of an adsorption process using Kaolinite clay,” Sci. African, vol. 18, p. e01390, 2022.

E. R. Amanda, K. Nisyak, W. Nurdianti, and W. S. Febriari, “Pengembangan metode ekstraksi fase padat terdispersi berbasis karbon aktif untuk pemisahan amoxicillin dalam urin,” Indones. Chem. Appl. J., vol. 5, no. 1, pp. 5–14, 2022.

H. Xu, J. Liu, P. Chen, G. Shao, B. Fan, H. Wang, D. Chen, H. Lu, and R. Zhang, “Preparation of magnetic kaolinite nanotubes for the removal of methylene blue from aqueous solution,” J. Inorg. Organomet. Polym. Mater., vol. 28, no. 3, pp. 790–799, 2018.

T. I. Wulan Sari, M. Muhsin, and H. Wijayanti, “Pengaruh metode aktivasi pada kemampuan kaolin sebagai adsorben besi (Fe) air sumur garuda,” Konversi, vol. 5, no. 2, p. 20, 2018.

M. R. Abukhadra, B. M. Bakry, A. Adlii, S. M. Yakout, and M. A. El-Zaidy, “Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water,” J. Hazard. Mater., vol. 374, pp. 296–308, 2019.

S. A. Putri, A. Asnawati, and D. Indarti, “Optimalisasi adsorpsi zat warna Rhodamin b pada hemiselulosa dalam sistem dinamis,” Berk. Sainstek, vol. 7, no. 1, p. 1, 2019.

G. A. Wardani, C. K. Putri, F. Gustaman, T. Hidayat, and E. Nofiyanti, “Chitosan-activated charcoal of modified corn cobs as an antibiotics adsorbent,” Walisongo J. Chem., vol. 5, no. 2, pp. 167–176, 2022.

J. Jonzon, “Characterization and modeling of amorphous and crystalline ratios in poly-acrylates,” Mid Sweden University: Sweden, 2020.

J. N. Nsami and J. K. Mbadcam, “The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue,” J. Chem., vol. 2013, pp. 1-8, 2013.

S. Lindasari, Rudiyansyah, and K. P. Utomo, “Penentuan kapasitas adsorpsi ion klorida (Cl-) pada pasir kuarsa terlapis mangan oksida dan kaolin teraktivasi HCl,” J. Kim. Khatulistiwa, vol. 6, no. 1, pp. 8–16, 2017.

P. V. B. Leal, D. H. Pereira, R. M. Papini, and Z. M. Magriotis, “Effect of dimethyl sulfoxide intercalation into kaolinite on etheramine adsorption: Experimental and theoretical investigation,” J. Environ. Chem. Eng., vol. 9, no. 4, 2021.

R. Dewi, H. Agusnar, Z. Alfian, and Tamrin, “Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials,” J. Phys. Conf. Ser., vol. 1116, no. 4, pp. 8–14, 2018.

A. Awaluddin, S. Mahyudin, and S. Ahda, “Pengaruh penambahan bahan dopan Ta2O5 pada bahan piezoelektrik ramah lingkungan (K0,5Na0,5)0,96Li0,04NbO3 dengan menggunakan sintesis metode molten salt,” J. Fis. Unand, vol. 4, no. 2, pp. 136–143, 2015.

F. Bergaya, B. K. G. Theng, and G. Lagaly, Handbook of Clay Science, vol. 1, no. 2. 2006.

U. M. Anggriani, A. Hasan, and I. Purnamasari, “Kinetic adsorption of activated carbon in decreasing concentrations of copper (Cu) and lead (Pb) metals,” J. Kinet., vol. 12, no. 02, pp. 29–37, 2021.

S. J. Santosa, “Sorption kinetics of Cd(II) species on humic acid-based sorbent,” Clean - Soil, Air, Water, vol. 42, no. 6, pp. 760–766, 2014.

N. Sylvia, L. Sobrina, and N. Nasrun, “Optimasi proses penyerapan CO2 dengan adsorben karbon aktif menggunakan Computational Fluid Dynamics (CFD) dan Response Surface Methodology (RSM),” J. Teknol. Kim. Unimal, vol. 8, no. 1, p. 69, 2019.

I. Syauqiah, M. Amalia, and H. A. Kertini, “Analisis variasi waktu dan kecepatan pengaduk pada proses adsorpsi limbah logam berat dengan arang aktif,” Info Tek., vol. 12, no. 1, pp. 11–20, 2011.

R. Alfanaar, Y. Yuniati, and Z. Rismiarti, “Studi kinetika dan isoterm adsorpsi Besi(III) pada zeolit alam dengan bantuan gelombang sonikasi,” EduChemia (Jurnal Kim. dan Pendidikan), vol. 2, no. 1, p. 63, 2017.

L. Liu, W. Cui, C. Lu, A. Zain, W. Zhang, G. Shen, S. Hu, and X. Qian, “Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: functional groups dependence of adsorption performance and mechanisms,” J. Environ. Manage., vol. 268, no. March, p. 110630, 2020.

H. Liu, Z. Hu, H. Liu, H. Xie, S. Lu, Q. Wang, and J. Zhang, “Adsorption of amoxicillin by Mn-impregnated activated carbons: Performance and mechanisms,” RSC Adv., vol. 6, no. 14, pp. 11454–11460, 2016.

A. Chandrasekaran, C. Patra, S. Narayanasamy, and S. Subbiah, “Adsorptive removal of Ciprofloxacin and Amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora,” Environ. Res., vol. 188, p. 109825, 2020.

J. Y. J. Yeo, D. S. Khaerudini, F. E. Soetaredjo, G. L. Waworuntu, S. Ismadji, A. Putranto, and J. Sunarso, “Experimental and modelling study of adsorption isotherms of amoxicillin, ampicillin and doripenem on bentonite-chitosan composite,” South African J. Chem. Eng., vol. 43, no. February 2022, pp. 38–45, 2023.

L. Ren, D. Zhou, J. Wang, T. Zhang, Y. Peng, and G. Chen, “Biomaterial-based flower-like MnO2@ carbon microspheres for rapid adsorption of amoxicillin from wastewater,” J. Mol. Liq., vol. 309, p. 113074, 2020.

D. L. C. Rodrigues, F. M. Machado, A. G. Osorio, C. F. de Azevedo, E. C. Lima, R. S. da Silva, D. R. Lima, and F. M. Goncalves, “Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies,” Environ. Sci. Pollut. Res., vol. 27, no. 33, pp. 41394–41404, 2020.




DOI: http://dx.doi.org/10.24845/ijfac.v9.i1.18

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License