Synthesis of Chitosan−Al2O3 Composite using the Sol-Gel Method and Its Application in Photodegradation of Methylene Blue

Desnelli Desnelli, Ipro Hati Padilah, Maria Ulfa, Eliza Eliza, Ady Mara, Fatma Fatma

Abstract


The research on synthesis of composites Kitosan-Al2O3 by the sol-gel method for photodegradation of methylene blue has been carried out. Chitosan-Al2O3 varied by mass ratios (1:1), (1:2) and (1:3). The product were characterized using XRD and UV-DRS. Chitosan-Al2O3 ratio (1:1) were characterized by SEM-EDS. The best material will be used to degrade the mehtylene blue by various condition, i.e., effect of pH, contact time and initial concentration of methylene blue. The Chitosan-Al2O3 (1:1) composite was chosen as a material for degrading methylene blue. The result of characterization using XRD showed crystal size the Chitosan- Al2O3 (1:1) composites result were 3,17 nm. UV-DRS characterization, The band gap energy is 1,35 eV. The morphological condition by SEM of Chitosan-Al2O3 ratio (1:1) showed a spherical shape with a small size, and a porous surface the constituent elements C (4.93%), O (33.31%), Na (13.92%), Al (45.59%) dan Zn (2.24%). The degradation process showed the effective condition were pH 10 and contact time of 200 minutes. The optimum concentration of methylene blue at 20 ppm with percent effectivity of concentration reduction methylene blue i.e. 79.35% and the result of TOC analysis i.e. 22,36%. The Chitosan-Al2O3 can be used to degraded the Methylene blue.


Full Text:

Full text PDF

References


Batan, N. M. H. S. dan Larasgita, L. 2015. Penggunaan Katalis γ-Alumina Untuk Degradasi Gliserol Menggunakan Teknologi Sonikasi. Skripsi. Surabaya: Institut Teknologi Sepuluh November.

Chong, M. N., Jin, B., Chow, C. W. K. and Saint, C. 2010. Recent Developments in Photocatalytic Water Treatment Technology: A review. Water Research. 44(10): 2997-3027.

Dhanya, A. and Aparna, K. 2016. Synthesis and Evaluation of TiO2/Chitosan Based Hydrogel for The Adsorptional Photocatalytic Degradation of Azo and Anthraquinone Dye under UV Light Irradiation. Procedia Technology. 24 (1) : 611–18.

Fajarwati, F, I., Sugiharto, E., dan Siswanta,

D. 2016. Film of Chitosan Carboxymethyl Cellulosepolyele-ctrolyte Complex as Methylene Blue Adsorbent. Eksakta: Jurnal Ilmu-Ilmu MIPA. 16(1): 36-45.

Fajriati, I., Mudasir dan Wahyuni, E. T. 2019. Adsorption and Photodegradation of Cationic and Anionic Dyes by TiO2-Chitosan Nanocomposite. Indonesian Journal of Chemistry. 19(2): 441–453.

Fauzi, N. I. M. et al. 2020. Nanostructured Chitosan/Maghemite Composites Thin Film for Potensial Optical Detection of Mercury Ion by Surface Plasmon Resonace Investigation. Polymers. 12 (1497): 1-14.

Houas, A., Lachheb, H., Ksibi, M., Elaloui, E.,Guillard, C., Marie, J. and Hermann. 2001. Photocatalytic Degradation Pathway of Methylene Blue in Water. Applied Catalysis B: Environmental. 31(2): 145-157.

Lin, X., et al. 2019. Treatment of Aquaculture Wastewater through Chitin/ZnO Composite Photocatalyst. Water. 11 (2): 1-19.

Malato, S., Blanco, J.,Vidal, A., and Richter, C. 2002. Photocatalysis with Solar Energy at a Pilot-Plant Scale: An Overview. Applied Catalysis B: Environmental 37(1): 1–15.

Nguyen, C. H., Fu, C. C. and Juang, R. S. 2018. Degradation of Methylene Blue and Methyl Orange by Palladium- doped TiO2 Photocatalysis for Water Reuse: Efficiency and Degradation Pathway. Journal of Cleaner Production. 202(1): 413-427.

Pathania, D., Katwal, R. and Kaur, H. 2016. Enhanced Photocatalytic Activity of Electrochemically Synthesized Aluminium Oxide Nanoparticles. International Journal of Minerals, Metallurgy and Materials. 23(3): 358-371.

Özer, A and Dursun., G. 2007. Removal of Methylene Blue from Aqueous Solution by Dehydrated Wheat Bran Carbon. Journal of Hazardous Materials 146(1–2): 262–69.

Riskiani, E., Suprihatin, I, E dan Sibarani, J. 2019. Fotokatalis Bentonit-Fe2O3 Untuk Degradasi Zat Warna Remazol Brilliant Blue. Jurnal Cakra Kimia. 7 (1): 46-54.

Rouhi Broujeni, B., A. Nilchi, A. H. Hassani, and R. Saberi. 2018. Preparation and Characterization of Chitosan/Fe2O3 Nano Composite for the Adsorption of Thorium (IV) Ion from Aqueous Solution. Water Science and Technology 78(3): 708–20.

Rozita, Y., Brydson, R. and Scott, A.J. 2010. An Investigation of chemical gamma- Al2O3 nanoparticles. Journal of Physics: Conference Series 241. 241(1): 1-4.

Saengkwamsawang, P., Pimanpaeng, S., Amornkitbamrung, V. and Maensiri, S. 2014. Syntesis and Caracterization of Al2O3 Nanopowders by Simple Chitosan-polymer Complex Solution Route. Ceramics International. 40(4): 5137-5143.

Zainal, Z., Hui, L. K., Hussein, Abdullah, A.H. and Hamadneh, I. R. 2009. Characterization of TiO2-Chitosan/ Glass Photocatalyst for The Removal of a Monoazo Dye Via Photodegradation-Adsorption Process. Journal of Hazardous Materials. 164(1): 138-145.

Zavareh, S., Zarei, M., Darvishi, F. and Azizi, H. 2015. As(III) Adsorption And Antimicrobal Properties of Cu- Chitosan/alumina Nanocomposite. Chemical Engineering Journal. 273(1): 610-621.

Zhu, H., Jiang, R., Xiao, L., Chsng, Y., Guan, Y., Li, X. and Zeng, G. 2009. Photocatalytic Decolorization and Degradation of Congo Red on Innovative Crosslinked Chitosan/ Nano-Cds Composite Catalyst Under Visible Light Irradiation. Journal of Hazardous Materials. 169(1-3): 933-940.




DOI: http://dx.doi.org/10.24845/ijfac.v8.i1.40

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License