Synthesis and Structural Analysis of Magnesium Oxide Nanomaterial Using Ethanol as Polymerization Solvent

I Wayan Sutapa, Abdul Wahid Wahab, Paulina Taba, Nursiah La Nafie

Abstract


The purpose of the study was to synthesize MgO nanomaterials using sol-gel method with ethanol as solvent and to perform structural analysis of the products. Mg-oxalate was initially prepared prior magnesium acetate. Magnesium acetate dissolved in ethanol, and the oxalic acid added to adjust pH until gel phase formed. The gel was heated at 100 C for 24 hours to produce magnesium oxalate solids. Solids was sieved using ±150 mesh then annealed at 550 C for 6 hours to produce MgO nanomaterial. The magnesium oxalate was characterized using FT-IR, XRD, and SEM. FT-IR peak at 3408.22 cm-1; 1709.35 cm-1; 1375.39 cm-1; 830.32 cm-1; 420.48 cm-1, and
the XRD peak 17.95o; 22.97o; 25.02o; 27,94o; 35.10o; 37,63o; 44.16o were characteristic of Mg-oxalate. Meanwhile, FT-IR band at 1030.24 cm-1; 2358.94 cm-1; 1627.92 cm-1; 1417.66 cm-1; 437.84 cm-1, and XRD peak at 38.92o; 43.3o; 56.02o; 62.64o; 74.88o and 79.04o shows characteristic of MgO nanomaterial. Structure analysis shown the MgO nanomaterials has an average crystal size 8.11 nm, and lattice length 21.21 nm. The values of strain, stress, energy density crystal and dislocation density of the MgO are 5.3 x 10-5 MPa, 32.97 MPa, 154.81 J/nm2, 1.52 x 10-3 nm-2 respectively. Morphologically the MgO nanomaterial produced is cubic.


Full Text:

Full Text PDF

References


J.-F. Lang, J.-G. You, X.-F. Zhang, X.-D. Luo, and S.-Y. Zheng, “Effect of MgO on thermal shock resistance of CaZrO3 ceramic,” Ceramics Intern., vol. 44, no. 18, pp. 22176–22180, Dec. 2018.

F. Karakaş, G. Pyrgiotakis, M. S. Çelik, and B. M. Moudgil, “Na-Bentonite and MgO Mixture as a Thickening Agent for Water-Based Paints,” KONA Pow. Part. J., vol. 29, pp. 96–106, 2011.

N. S. Sidorov, A. V. Palnichenko, and O. M. Vyaselev, “Superconductivity in Mg/MgO interface,” Physica C: Superconductivity, vol. 480, pp. 123–125, Oct. 2012.

E. A. Elkhalifa and H. B. Friedrich, “Magnesium oxide as a catalyst for the dehydrogenation of n-octane,” Arabian J. Chem., vol. 11, no. 7, pp. 1154–1159, Nov. 2018.

N. M. Julkapli and S. Bagheri, “Magnesium oxide as a heterogeneous catalyst support,” Rev. Inorg. Chem., vol. 36, no. 1, pp. 1–41, 2015.

R. R. Devi, I. M. Umlong, P. K. Raul, B. Das, S. Banerjee, and L. Singh, “Defluoridation of water using nano-magnesium oxide,” J. Experiment. Nano., vol. 9, no. 5, pp. 512–524, May 2014.

X. Yang, L. Zhao, X. Li, and Y. Xiao, “Magnesium Oxide-Based Absorbents for CO2 Capture at Medium Temperature,” Curr. Pollution Rep., vol. 4, no. 1, pp. 13–22, Mar. 2018.

Y. Tolstova, S. T. Omelchenko, A. M. Shing, and H. A. Atwater, “Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering,” Scientific Rep., vol. 6, p. 23232, Mar. 2016.

P. P. Fedorov, E. A. Tkachenko, S. V. Kuznetsov, V. V. Voronov, and S. V. Lavrishchev, “Preparation of MgO nanoparticles,” Inorg. Mater., vol. 43, no. 5, pp. 502–504, May 2007.

M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi, and N. Kamarudin, “Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents,” Nanoscale Res. Lett., vol. 9, no. 1, p. 134, Mar. 2014.

I. W. Sutapa, A. W. Wahab, P. Taba, and N. L. Nafie, “Synthesis and Structural Profile Analysis of the MgO Nanoparticles Produced Through the Sol-Gel Method Followed by Annealing Process,” Oriental J. Chem., vol. 34, no. 2, pp. 1016–1025, Apr. 2018.

H. Cui, X. Wu, Y. Chen, and R. I. Boughton, “Synthesis and characterization of mesoporous MgO by template-free hydrothermal method,” Materials Resear. Bull., vol. 50, pp. 307–311, Feb. 2014.

Z. Camtakan, S. (Akyil) Erenturk, and S. (Doyurum) Yusan, “Magnesium oxide nanoparticles: Preparation, characterization, and uranium sorption properties,” Environment. Prog. & Sustain., vol. 31, no. 4, pp. 536–543, 2012.

K. V. Rao and C. S. Sunandana, “Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route,” J. Mater. Sci., vol. 43, no. 1, pp. 146–154, Jan. 2008.

Z.-X. Tang and L.-E. Shi, “Preparation of nano-MgO using ultrasonic method and its characteristics,” Eclética Química, vol. 33, no. 1, pp. 15–20, 2008.

L.-Z. Pei, W.-Y. Yin, J.-F. Wang, J. Chen, C.-G. Fan, and Q.-F. Zhang, “Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process,” Mater. Research, vol. 13, no. 3, pp. 339–343, Sep. 2010.

M. Rezaei, M. Khajenoori, and B. Nematollahi, “Preparation of nanocrystalline MgO by surfactant assisted precipitation method,” Materials Resear. Bull., vol. 46, no. 10, pp. 1632–1637, Oct. 2011.

R. Dobrucka, “Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties,” Iran J. Sci. Technol. Trans. Sci., vol. 42, no. 2, pp. 547–555, Jun. 2018.

M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi, and N. Kamarudin, “Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents,” Nanoscale Res Lett, vol. 9, no. 1, p. 134, Mar. 2014.

M. C. D’Antonio, N. Mancilla, A. Wladimirsky, D. Palacios, A. C. González-Baró, and E. J. Baran, “Vibrational spectra of magnesium oxalates,” Vibrational Spectroscopy, vol. 53, no. 2, pp. 218–221, Jul. 2010.

F. Mohandes, F. Davar, and M. Salavati-Niasari, “Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate,” J. Phys. Chem. Solids, vol. 71, no. 12, pp. 1623–1628, Dec. 2010.

S. L. Reddy, T. R. Reddy, G. S. Reddy, T. Endo, and R. L. Frost, “Synthesis and spectroscopic characterization of magnesium oxalate nano-crystals,” Spectro. Acta Part A: Mol. Biomol. Spect., vol. 123, pp. 25–29, Apr. 2014.

A. Kruk, “Fabrication of MgO high transparent ceramics by arc plasma synthesis,” Optical Mater., vol. 84, pp. 360–366, Oct. 2018.

I. W. Sutapa, A. W. Wahab, P. Taba, and N. L. Nafie, “Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles,” J. Phys.: Conf. Ser., vol. 979, p. 012021, Mar. 2018.

Q. Zhu, A. R. Oganov, and A. O. Lyakhov, “Novel stable compounds in the Mg–O system under high pressure,” Phys. Chem. Chem. Phys., vol. 15, no. 20, pp. 7696–7700, May 2013.

L. M. Loong et al., “Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions,” Scien. Reports, vol. 4, p. 6505, Sep. 2014.

M. J. L. Sangster, “Relaxations and their strain derivatives around impurity ions in MgO,” J. Phys. C: Solid State Phys., vol. 14, no. 21, pp. 2889–2898, Jul. 1981.

S. Auzary, F. Badawi, L. Bimbault, J. Rabier, and R. J. Gaboriaud, “Stress and microstructure in YBaCuO thin films on MgO and SrTiO3 substrates studied by X-ray diffraction and bending tests,” J. Alloys and Comp., vol. 251, no. 1, pp. 37–40, Apr. 1997.

Y. Kawamura and H. Nakai, “Energy density analysis of embedded cluster models for an MgO crystal,” Chem. Phys. Lett., vol. 410, no. 1, pp. 64–69, Jul. 2005.

R. Reali, F. Boioli, K. Gouriet, P. Carrez, B. Devincre, and P. Cordier, “Modeling plasticity of MgO by 2.5D dislocation dynamics simulations,” Mat. Sci. Enginer. : A, vol. 690, pp. 52–61, Apr. 2017.

M. Dongol, A. El-Denglawey, M. S. Abd El Sadek, and I. S. Yahia, “Thermal annealing effect on the structural and the optical properties of Nano CdTe films,” Optik, vol. 126, no. 14, pp. 1352–1357, Jul. 2015.




DOI: http://dx.doi.org/10.24845/ijfac.v4.i2.82

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License