

Indonesian Journal of Fundamental and Applied Chemistry

Article http://ijfac.unsri.ac.id

Air Quality Analysis of SO₂, NO₂ and CO in Palembang City

Shelly Noftri¹⁾, M. Faizal¹⁾ and Risfidian Mohadi¹⁾

Abstract

Population activity which tends to centralized in certain area cause decrease in air quality due to exhaust gas from transportation vehicle. From 2011–2014, Palembang city transport growth 3-5% per year comprise of passenger transportation, buses, truck, motorcycle and special vehicle. The increase of vehicle in Palembang gave the city air pollution potential. Transportation is the main source of air pollution in big city with 70% contribution. Exhaust gas from transport activity consists of 60% CO and 15% incomplete combustion of hydrocarbons such as NOx and SOx. The aim of the research is to analyze air quality in Palembang city. Samples were taken and subject to analysis for SO_2 , NO_2 and CO. Sample location were determined by using purposive sampling. Location was chosen by means of traffic density at least for one hour and took place at Charitas crossroads, Patal intersection, Mesjid Agung circle, Lemabang crossroad and Plaju intersection. The Result of analysis showed SO_2 level is at range 112–208 μ g/Nm³/hour. NO_2 level between 45–227 μ g/Nm³/hour and CO at range 12.595–18.320 μ g/Nm³/hour. All parameter of air quality obtained are below threshold value defined by government regulation (GR) on air quality No 41 year 1999.

Keywords: Air quality, SO₂, NO₂, CO

Abstrak (Indonesian)

Suatu daerah apabila terjadi pemusatan aktivitas penduduk akan menyebabkan terjadi pencemaran kualitas udara yang disebabkan transportasi. Dari data tahun 2011-2014 transportasi kota palembang mengalami kenaikan sekitar 3-5% tiap tahunnya terdiri dari mobil penumpang, bus, truk, sepeda motor dan kendaraan khusus (Laporan Data Kendaraan Bermotor Kota Palembang, 2013). Transportasi di kota-kota besar merupakan sumber pencemaran udara yang terbesar, dimana 70% pencemaran udara perkotaan disebabkan oleh aktivitas kendaraan bermotor. Kendaraan bermotor mengandung zat pencemaran, 60% dari pencemar yang dihasilkan terdiri dari CO dan sekitar 15% terdiri dari hidrokarbon yang tidak terbakar sempurna, NOX dan SOX. Tujuan penelitian untuk menganalisa kondisi kualitas udara di Kota Palembang. Pengambilan sampel udara dilakukan pengukuran parameter SO₂, NO₂ dan CO. Metode lokasi penelitian dilakukan dengan purposive sampling. Pemilihan lokasi pengambilan sampel yang berpotensi tercemar yaitu padat lalu lintas dan dilakukan selama satu jam di setiap lokasi pengambilan sampel meliputi Simpang Empat Charitas, Simpang Patal, Bundaran Mesjid Agung, Simpang Empat Lemabang dan Simpang Empat Plaju. Hasil pengukuran kualitas udara kadar SO2 menunjukkan kisaran nilai 112-208 μg/Nm³/Jam. Hasil pengukuran kadar NO2 menunjukkan nilai 45-227 μg/Nm³/Jam. Hasil pengukuran kualitas udara ambient karbon monoksida (CO) menunjukkan kisaran nilai 12.595-18.320 μg/Nm³/Jam. Hasil pengukuran SO₂, NO₂, dan CO menunjukkan jika di lima lokasi sampel berada dibawah nilai ambang batas yang ditetapkan berdasarkan peraturan pemerintah RI No. 41 Tahun 1999.

Kata Kunci: Kualitas udara, SO2, NO2, CO

INTRODUCTION

Air is very important for human and other creatures hence its quality must be maintained. According to government regulation no 41 year 1999, air is considered polluted if foreign substances are inserted into its body due to human activity which reduced its quality to a

DOI: 10.24845/ijfac.v2.i4.58

¹ Department of Environment Management, Graduate School of Sriwijaya University

^{*}Corresponding Author: shelly.noflisa@yahoo.com

certain level and cannot be used properly. The foreign substances are called pollutant and generally, it has a toxic effect to living organisms.

Increase in a number of vehicles in Palembang would raise environmental concern especially air pollution. Air pollution is a typical problem a city must face due to large number vehicle and other transportation used by the population. Heavily polluted air not only reduces comfort ability life of citizen but also causes several health problems such as respiratory disorders, eye irritation and lung problem [1].

Air pollution due to transportation exhaust fumes increased by two fold at 2000 based on 1999 condition and are estimated 10 times at 2020 [2]. The growth of transportation sector is projected to be 6-8% per year but at 1999 the vehicle grew almost 15% in the major city. At this rate, fuel use in transportation increase by 2.1 times at 1999, 4.6 times at 2008 and 9 times at 2018. Here we report an evaluation of air condition at Palembang city due to automobile emission by measuring SO₂, NO₂ and CO concentration. The result of measurement was evaluated according to air pollutant threshold regulation.

EXPERIMENTAL SECTION

Air sampling was conducted according to standard procedure for analyzing SO_2 , NO_2 and CO. Sampling location was chosen by means of purposive sampling. The location was considered to be polluted due to heavy traffic and the air sample was taken at least an hour for each location.

Table 1. Air sampling location

Table 1.7 m sampling location			
No.	Sampling Location	Coordinate	
1	Charitas crossroads	E :	
		104° 45'14.07"	
		$S: 02^{\circ} 58'37.17"$	
2	Patal intersection	E :	
		114 ⁰ 46'05.11"	
		$S: 02^{\circ} 56'59.54"$	
3	Mesjid Agung circle	E :	
		104 ⁰ 45'39.38"	
		S: 02° 59'17.69"	
4	Lemabang	E :	
	crossroads	104 ⁰ 47'00.69"	
		$S: 02^0 58'18.11''$	
5	Plaju intersection	E :	
	-	104° 46'50.62"	
		S: 03° 00'01.89"	

Measurement of several parameters in the samples was carried out. Methods of measurement are display on

Table 2 along with reference document and standard threshold.

Table 2. Air sample parameter measurement and method of analysis

Parameter	Unit	Analysis Method	Standard treshold	Ref. docum ent
SO_2	μg/Nm ³/hour	Pararosa nilin	900	[3]
NO_2	μg/Nm ³/hour	Saltzamn	400	[4]
CO	μg/Nm ³/hour	NDIR	30.000	[5]

Source : Peraturan Pemerintah RI No.41 Tahun 1999 Tentang Pengendalian Pencemaran Udara

RESULT AND DISCUSSION

Sulphur Dioxide (SO₂)

The measurement result of SO_2 in air sample at 5 different location exhibited range value 112-208 $\mu g/Nm^3$ /hours. Data detail as displayed on Table 3 confirmed that all 5 locations have SO_2 contamination below threshold value assigned by GR no 41 1999 at 900 $\mu g/Nm^3$.

Table 3. Measurement result of SO₂

Location	SO ₂	Note
Location	$\mu g/Nm^3/hours$	Note
Charitas	189	
crossroads	10)	GR no. 41
Patal	173	1999 on
intersection	173	threshold
Mesjid	191	value of
Agung circle	1,1	ambient air
Lemabang	112	quality; SO ₂
crossroads		: 900
Plaju	208	μg/Nm³/hours
intersection		

Nitrogen Dioxide (NO₂)

Measurement result of NO_2 on air sample showed that all 5 locations have average value at 45-227 $\mu g/Nm^3/hours$. Table 4 exhibit air qualities by means of NO2 at five locations still has value below standard threshold approved by regulation (Government regulation no. 41 year 1999) which is 400 $\mu g/Nm^3$.

Carbon Monoxide (CO)

Air quality measurement result in term of CO indicates that all 5 locations have the average value between 12,595-18,320 µg/Nm³/hour. Table 5 show CO in the air as other measurement result is below standard

threshold 30.000 µg/Nm³ approved by GR no. 41 year 1999.

Table 4. Measurement result of NO₂

Table 4. Measurement result of 1102			
Location	NO_2	Explanation	
Location	$\mu g/Nm^3/Hours$	Keterangan	
Charitas	159		
crossroads	139	GR no. 41	
Patal	161	1999 on	
intersection	101	threshold	
Mesjid	183	value of	
Agung circle	103	ambient air	
Lemabang	45	quality; NO2:	
crossroads	43	400	
Plaju	227	μg/Nm³/hour	
intersection	221		

Table 5. Measurement result of carbon monoxide

Location	CO µg/Nm³/hour	Explanation
Charitas crossroads	12,595	GR no. 41
Patal intersection	14,885	1999 on threshold
Mesjid Agung circle	18,320	value of ambient air
Lemabang crossroads	12,595	quality; CO: 30.000
Plaju intersection	18,320	$\mu g/Nm^3/hour$

Meteorological Factors

Along with SO₂, NO₂ and CO measurement, several parameters of meteorological factors were also determined at the locations which are air temperature, humidity, and wind velocity and weather condition. The results are shown in Table 6 and 7.

Table 6. Measurement result of air temperature and humidity

Location	Air temperature	Humidity
	(°C)	(%Rh)
Charitas crossroads	29.6	57.7
Patal intersection	34.4	41.7
Mesjid Agung circle	32.4	54.4
Lemabang crossroads	26.6	71.5
Plaju intersection	29.8	57.7

Table 7. Measurement result of wind velocity and weather condition

Location	Wind velocity (m/s)	Weather condition
Charitas crossroads	0.8	Sunny
Patal intersection	1.8	Sunny
Mesjid Agung circle	2.1	Cloudy
Lemabang crossroads	0.8	Sunny
Plaju intersection	1.8	Sunny

According to the data table 6, highest air temperature was detected at Patal intersection i.e. 34.4°C. Pollutant tends to increase its amount at higher temperature [9]. The wind velocity was detected at 0.8-2.1 m/s. At some point, air and pollutant mixing is assisted with high velocity of wind and make certain area increase its pollution level compare to other [10, 11].

A report of air quality at Palembang city during September 2012 has decreased caused by haze from land fires [12]. Haze was spread across nations which triggered flight delays, disturbed office and school activities and even several health problems to the citizen such as eye irritation, cough, and acute respiratory infections.

CONCLUSION

Air quality measurement result showed that Plaju intersection has SO_2 , NO_2 and CO contamination higher than other location. All five locations have pollutant measurement result below standard threshold approved by the government regulation No 41 year 1999.

REFERENCES

- [1] G. Gunawan and N. Kusminingrum, "Polusi udara akibat aktivitas kendaraan bermotor di jalan perkotaan Pulau Jawa dan Bali," *J. Jalan dan Jemb.*, vol. 25, no. 3, pp. 314–326, 2008.
- [2] M. Amar, "Analisis Faktor Risiko Pencemaran Udara di Kota Palembang Tahun 2012," Palembang, 2012.
- [3] B. Brunekreef and S. T. Holgate, "Air pollution and health," *Lancet*, vol. 360, no. 9341, pp. 1233–1242, Oct. 2002.
- [4] BSN, "Cara Uji Kadar Sulfur Dioksida (SO2) dengan Metode Pararosanilin Mengunakan

61

- Spektrofotometer," Jakarta, SNI 19-7119.7-2005, 2005.
- [5] BSN, "Cara Uji Kadar Nitrogen Dioksida (NO2) dengan Metode Griess Saltzman Mengunakan Spektrofotometer," Jakarta, SNI 19-7119.2-2005, 2005
- [6] BSN, "Cara Uji Kadar Karbon Monoksida (CO) dengan Metode Non Dipersive Infra Red (NDIR)," Jakarta, SNI 7119.10-2011, 2011.
- [7] A. Daly and P. Zannetti, "An Introduction to Air Pollution Definitions, Classifications, and History," in *Ambient air pollution*, P. Zannetti, D. Al-Ajmi, and S. Al-Rashied, Eds. Fremont: ASST, 2007, pp. 1–14.
- [8] J. Jakubiak-Lasocka, J. Lasocki, R. Siekmeier, and Z. Chłopek, "Impact of Traffic-Related Air Pollution on Health," Springer, Cham, 2014, pp. 21–29.

- [9] P. Prabu, "Aspek Klimatologi Pencemaran Udara," Kesehatan Lingkungan, 2009. [Online]. Available: https://putraprabu.wordpress.com/2009/01/02/aspe k-klimatologi-pencemaran-udara/. [Accessed: 10-Jul-2017].
- [10] N. Rahmawati, "Pola spasial konsentrasi gas Karbonmonoksida (CO) di kota Jakarta," University of Indonesia, 2008.
- [11] S. Yulianti, "Analisis konsentrasi gas Karbon Monoksida (CO) pada ruas Jalan Gajah Mada Pontianak," *J. Mhs. Tek. Lingkung.*, vol. 1, no. 1, May 2014.
- [12] M. Tabrani, "Laporan Pelaksanan Pemantauan Kualitas Udara Dipersimpangan Jalan Protokol dalam Wilayah Kota Palembang," Palembang, 2013.

DOI: 10.24845/ijfac.v2.i4.58