Performance Analysis of Ceramic Membranes in Clean Water Treatment on River Water Quality

Yogi Astrada¹, Poedji Loekitowati Hariani² dan Muhammad Faizal³

¹ Environmental Management Study Program, Sriwijaya University Universitas Sriwijaya
² Department of Chemical, Faculty of Mathematics and Natural Science, Universitas Sriwijaya
³ Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya Jln. Raya Palembang Prabumulih KM 32 Indralya Ogan Ilir

*Corresponding Author: yougie.astrada@gmail.com

Abstract

The clean water treatment process changes the physical, chemical, and biological properties of water so that it meets the requirements for use as drinking water or daily needs. The purpose of this research is to examine the performance of ceramic membranes in the process of converting river water into clean water through an environmentally friendly microfiltration-adsorption-ceramic membrane integrated process. The results showed that each filter is able to improve the quality status of the water quality of the Kelekar River sample. The final concentration value of BOD₅ 17.0 mg/L with rejection percentage (%R) 1.16%; COD 14.3 mg/L with %R of 32.55%; manganese (Mn) 0.030 mg/L with a %R of 29.41%; nitrate (NO₃⁻) 0.013 mg/L with a %R of 13.33%; nitrite (NO₂⁻) 0.50 mg/L with a %R of 16.67%; iron (Fe) 0.12 mg/L with %R of 29.41%; ammonia (NH₃-N) 0.10 mg/L with %R of 37.50%; and biological parameters in the form of total coliform 21 total/100 mL with a %R of 40%. Based on the analysis of river water quality parameters, such as BOD₅, iron (Fe), manganese (Mn), nitrate (NO₃⁻), ammonia (NH₃-N), and total coliform bacteria after water treatment were within environmental quality standards. Meanwhile, COD and nitrite (NO₂⁻) were still not meeting the environmental quality standards set by Government Regulation This is presumably due to the filter arrangement, which places the microfiltration filter first before adsorption, resulting in an inefficient water treatment process in the filter.

Keywords: Water treatment, Kelekar River, microfiltration–adsorption–ceramic membrane integrated process

Abstrak (Indonesian)

Penelitian ini ditujukan untuk menganalisis kinerja membran keramik dalam proses pengolahan air di sungai menjadi air bersih menggunakan proses terpadu mikrofiltrasi–adsorpsi–membran keramik yang ramah lingkungan. Hasil analisa menunjukkan bahwa masing-masing filter mampu meningkatkan status mutu kualitas air sampel Sungai Kelekar. Nilai konsentrasi akhir parameter BOD₅ 17.0 mg/L dengan persentase rejeksi (%R) sebesar 1,16%; COD 14,3 mg/L dengan %R sebesar 32,55%; mangan (Mn) 0,030 mg/L dengan %R sebesar 29,41%; nitrat (NO₃⁻) 0,013 mg/L dengan %R sebesar 13,33%; nitrit (NO₂⁻) 0,50 mg/L dengan %R sebesar 16,67%; besi (Fe) 0,12 mg/L dengan %R sebesar 29,41%; amoniak (NH₃-N) 0,10 mg/L dengan %R sebesar 37,50%; dan parameter biologi berupa total coliform 21 jumlah/100 mL dengan %R sebesar 40%. Berdasarkan analisis parameter kualitas air sungai, nilai konsentrasi BOD₅, besi (Fe), mangan (Mn), nitrat (NO₃⁻), amoniak (NH₃-N), dan total bakteri coliform setelah pengolahan telah sesuai standar baku mutu lingkungan. Sedangkan nilai konsentrasi COD dan nitrit (NO₂⁻) masih belum sesuai standar baku mutu lingkungan yang ditetapkan oleh Peraturan Pemerintah. Hal ini diduga karena susunan filter yang menempatkan filter mikrofiltrasi terlebih dahulu sebelum adsorpsi, sehingga mengakibatkan tidak efisiennya proses pengolahan air di dalam filter.

Kata Kunci: Pengolahan air, Sungai Kelekar, proses terpadu mikrofiltrasi–adsorpsi–membran keramik
INTRODUCTION

The clean water treatment process changes the physical, chemical, and biological properties of water to meet the requirements for use as drinking water or daily needs. The purpose of this clean water treatment activity is to improve water quality by reducing the level of turbidity of the water, reducing odor, taste, and color, eliminating and killing microorganisms, reducing levels of materials dissolved in water, reducing hardness, and improving acidity (pH) water [1].

Membrane technology is one of the high-performance water treatment technologies [2]. Ceramic membranes are an inorganic membrane composed of metals and nonmetals combined to form oxides, nitrides, or carbide. Ceramic membranes are very efficient for water treatment because they can separate liquid mixtures or gas perforation while also reducing hardness. Furthermore, this technology has no negative environmental consequences [3, 4]. Ceramic membranes containing clay, activated carbon, and housing-5 (F5) contains a ceramic membrane.

Analysis Data

Evaluation of membrane performance is carried out by measuring rejection or perm selectivity, namely the ability of the membrane to pass certain species and retain other species. Rejection (R) shows the value of the concentration fraction of solutes retained by the membrane which can be calculated by the following formula [7]:

\[R = \left(1 - \frac{C_p}{C_f}\right) \times 100\% \]

Information:
- \(R \) = Rejection coefficient (%)
- \(C_p \) = Concentration of solute in permeate
- \(C_f \) = Concentration of solute in the feed

RESULTS AND DISCUSSION

The performance of membranes in water treatment with an integrated process of microfiltration–adsorption–ceramic membranes gave significant results in reducing the concentration of several water quality parameters in the Kelekar River, including BOD	extsubscript{5}, COD, iron (Fe), manganese (Mn), nitrate (NO\textsubscript{3})-, nitrite (NO\textsubscript{2})-, ammonia (NH\textsubscript{3}-N), iron (Fe), and total coliform bacteria (Table 1).
The Environmental Quality Standards used in this study are based on Government Regulation of the Republic of Indonesia No. 22 of 2021 on Environmental Protection and Management Implementation. These water quality standards serve as the basis for determining whether water samples are satisfactory or safe for use [8, 9].

BOD₅ and COD Concentration

The concentration of BOD₅ during the water treatment process did not fluctuate too significantly (Figure 1). In contrast to the concentration of COD parameters, which continued to decrease until the end of the filtration (Figure 2). The concentration of BOD₅ produced from water treatment with an integrated microfiltration – adsorption – ceramic membrane process is by class I environmental quality standards based on Government Regulation of Republic Indonesia (GRRI) No. 22 of 2021.

The increase in BOD₅ value is thought to be caused by the arrangement of the filtration model used in this study. Housings 1 and 2, which serve as microfiltration, should be placed after housings 3 and 4, which serve as adsorption. Because previous research has shown that filtration using a combination of adsorbents is effective in significantly reducing BOD levels. The use of a combination of adsorbents such as activated charcoal, zeolite, silica sand, anthracite, and ferrolite demonstrates multipurpose capabilities that can carry out filtration, adsorption, and ion exchange processes concurrently to decompose and reduce levels of organic pollutants in waste [10, 11].

Meanwhile, the COD concentration has not been able to reach the specified quality standard, which is 10 mg/L. The high concentration of COD is thought to be caused by the presence of divalent and monovalent compounds that cannot dissolve completely during the water treatment process [12]. Although it can be seen from the graph (Figure 2), there has been a significant decrease in COD concentration during the water treatment process.

Iron (Fe) Concentration

The results of the analysis of the concentration of iron (Fe) contained in the water sample of the Kelekar River decreased significantly along with the ongoing water treatment process from filtration 1 to filtration 5. The initial concentration value before the water treatment process, which was 0.45 mg/L, decreased to 0.14 mg/L at the end of the water treatment.
water is in accordance with environmental quality standards class I, Government Regulation of Republic Indonesia No. 22 of 2021. It is further explained that the permissible content of iron in water is less than 0.3 mg/L and if it exceeds this value, it will cause the water to turn reddish in color due to the formation of deposits on metal pipes and the taste of the water becomes undesirable [3, 13].

Manganese (Mn) Concentration

In Figure 4, it can be seen that there was an increase in the concentration of manganese (Mn) at the beginning of the water treatment. Mn concentration previously was 0.033 mg/L and increased to 0.097 mg/L in F1. Then it decreased along with the water treatment process to 0.030 mg/L in F5, with a rejection percentage value (%R) of 67.03%. The increase in the concentration of Mn in water that occurs at the beginning of water treatment can be caused by several factors, including the low pH value concentration, the amount of oxygen dissolved in the water, the presence of aggressive CO₂ which causes the dissolution of ferrous metals, the high water temperature that will dissolve the iron in the water, etc. [1].

Nevertheless, the value of Mn concentration still meets the environmental water quality book standard of class I, GRRI No. 22 of 2021 at 0.1 mg/L. If there is water with low oxygen content, then the concentration of Mn in the water is high because under anaerobic conditions, Mn in the water is in the form of Mn²⁺ and remains stable due to the low oxygen content, which can cause the oxidation of Mn²⁺ to Mn⁴⁺ [13, 14, 15].

Nitrate (NO₃⁻) and Nitrite (NO₂⁻) Concentration

At the beginning of water treatment, the concentration of nitrate (NO₃⁻) increased from 0.013 mg/L before treatment to 0.015 mg/L in filter 1 (F1), then decreased along with the water treatment process to 0.013 mg/L and the value of the rejection (% R), i.e., 13.33%. The concentration of nitrate (NO₃⁻) in this study has met the environmental quality standard class I GRRI No. 22 of 2021 (Figure 5). It is said that nitrate-nitrogen levels in natural waters are almost never more than 0.1 mg/L [16].

In contrast to the graph of a stable change in nitrate concentration, the nitrite concentration decreased along with the water treatment process, as shown in Figure 6. The value of the concentration of nitrite (NO₂⁻) at the beginning of the study was 1.10 mg/L, then decreased gradually to 0, 0.60 mg/L with a rejection percentage (%R) of 16.67%. Although the concentration has decreased significantly, the concentration still exceeds the environmental quality standard limits for class I GRRI no. 22 of 2021, which is 0.06 mg/L. The concentration of nitrite in the water should not exceed 0.06 mg/L and natural waters contain nitrite at around 0.001 mg/L [16].

Ammonia (NH₃-N) Concentration

In Figure 7, it can be seen that there was a drastic decrease in ammonia concentration from 1.30 mg/L at the beginning of the study to 0.10 mg/L at the end of
the water treatment, with a rejection percentage (%R) of 37.50%. The value of this ammonia concentration has met the environmental quality book standards for class I GRRI No. 22 of 2021. Pollution of organic matter in waters originating from domestic waste, industrial waste, and agricultural fertilizer runoff can be an indication of high levels of ammonia in these waters. Ammonia levels in natural waters are usually less than 0.1 mg/L [16].

Coliform bacteria is an indicator of the presence of domestic sewage contaminants or poor sanitation, as well as fecal contamination from humans and warm-blooded animals [17, 18]. Coliform bacteria are more resistant to antibiotics than other pathogenic bacteria. Pathogenic bacteria are bacteria that can cause disease, so testing for coliform bacteria in water is critical [19, 20].

Based on the previous explanation, that water treatment using an environmentally friendly microfiltration – adsorption – ceramic membrane integrated process has been quite effective in improving the water quality of the Kelekar River samples. Water quality parameters such as manganese, nitrate, nitrite, iron, ammonia, and total coliform have met the requirements of environmental quality standards (BML) for clean water and drinking water.

CONCLUSION

The results of further analysis, it is known that each filter (F1-F5) is able to improve the quality status of the water quality of the Kelekar River sample. The final concentration value of BOD$_5$ 17.0 mg/L with rejection percentage (%R) 1.16%; COD 14.3 mg/L with %R of 32.55%; manganese (Mn) 0.030 mg/L with a %R of 29.41%; nitrate (NO$_3$) 0.013 mg/L with a %R of 13.33%; nitrite (NO$_2$) 0.50 mg/L with a %R of 16.67%; iron (Fe) 0.12 mg/L with %R of 29.41%; ammonia (NH$_3$-N) 0.10 mg/L with %R of 37.50%; and biological parameters in the form of total coliform 21 total/100 mL with a %R of 40%.

The series of microfiltration-adsorption-ceramic membrane integrated process water treatment equipment can be used to treat river water into clean water. Based on the analysis of river water quality parameters, such as BOD$_5$, iron (Fe), manganese (Mn), nitrate (NO$_3$), ammonia (NH$_3$-N), and total coliform bacteria after water treatment were within environmental quality standards. Meanwhile, COD and nitrite (NO$_2$) were still not meeting the environmental quality standards set by Government Regulation of Republic Indonesia No. 22 of 2021 concerning the implementation of environmental protection and management. This is presumably due to the filter arrangement, which places the microfiltration filter first before adsorption, resulting in an inefficient water treatment process in the filter.

REFERENCES

Aplikasi membran keramik buatan Kementerian Kesehatan Republik Indonesia, 2011.

DOI: 10.24845/ijfac.v7.i3.99