Optimization of Bio-Oil Pyrolysis Product from Palm Empty Fruit Bunches over H-Zeolite Catalyst using Response Surface Methodology (RSM)

Zainal Fanani, Addy Rachmat, Hasanudin hasanudin, Muhammad Said


Bio-oil pyrolysis product considered as a promising resource of hydrocarbon compound that can be used as alternative fuel or other application. Palm empty fruit bunch (PEFB) based bio-oil converted into hydrocarbon trough pyrolysis over sulfate activation natural zeolite. Here, we reported an optimization process of bio-oil pyrolysis specifically on temperature and catalyst dose variables by using response surface methodology (RSM). Prior conversion process, PEFB was analyzed to determine cellulose, hemicellulose and lignin content. Sulfate activation natural zeolite confirmed its acidity by ammonia and pyridine adsorption calculated by gravimetric method. Two independent variables namely temperature and catalyst weight used in optimization process by RSM whereas response variable is conversion percentage. Analysis result on cellulose, hemicellulose and lignin content are 45.39%, 30.36% and 20.5% respectively. Catalyst acidity determination based on ammonia and pyridine adsorption gave 1.002 mmol/g and 0.1994 mmol/g. Optimum condition of hydrocracking achieved at 568 °C and 2.1088 g catalyst weight with the product obtained at 62.21% conversion. The best product density is 1.086 g/mL obtained at hydrocracking temperature 554 °C and 2.0362 g catalyst. Based on GC-MS analysis, it was confirmed that the product comprises more straight-chain hydrocarbon than cyclic one. RSM calculation able to formulate the feasible model equation to predict the conversion percentage. The equation is; percent conversion = 60.059 + 14.268T + 9.783W – 25.649T2 – 18.809W2 + 3.114TW, whereas model equation for response variable on product density; ρ= 1.09103 – 0.12356T – 0.09744W + 0.11489T2 + 0.28888W2 – 0.00740TW

Full Text:

Full Text PDF


F. Li, K. Zhao, T. Sheng (Adam) Ng, Y. Dai, and C.-H. Wang, ‘Sustainable production of bio-oil and carbonaceous materials from biowaste co-pyrolysis’, Chem. Eng. J., vol. 427, no. 2022, doi: 10.1016/j.cej.2021.131821.

M. A. Shah, N. S. Khan, V. Kumar, and A. Qurashi, ‘Pyrolysis of walnut shell residues in a fixed bed reactor: Effects of process parameters, chemical and functional properties of bio-oil’, J. Environ. Chem. Eng., vol. 9, no. 4, p. 105564, Aug. 2021, doi: 10.1016/j.jece.2021.105564.

M. A. Al-Maari, M. A. Ahmad, A. T. M. Din, H. Hassan, and A. M. Alsobaai, ‘Co-pyrolysis of oil palm empty fruit bunch and oil palm frond with low-density polyethylene and polypropylene for bio-oil production’, Arab. J. Chem., vol. 14, no. 8, p. 103282, Aug. 2021, doi: 10.1016/j.arabjc.2021.103282.

J. Y. Hong, Y. S. Kim, and K. K. Oh, ‘Fractionation and delignification of empty fruit bunches with low reaction severity for high sugar recovery’, Bioresour. Technol., vol. 146, pp. 176–183, Oct. 2013, doi: 10.1016/j.biortech.2013.07.058.

C. S. Fermanelli, A. Córdoba, L. B. Pierella, and C. Saux, ‘Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study’, Waste Manag., vol. 102, pp. 362–370, Feb. 2020, doi: 10.1016/j.wasman.2019.10.057.

S. K. Tanneru and P. H. Steele, ‘Direct hydrocracking of oxidized bio-oil to hydrocarbons’, Fuel, vol. 154, pp. 268–274, Aug. 2015, doi: 10.1016/j.fuel.2015.03.080.

L. Zhang, R. Liu, R. Yin, and Y. Mei, ‘Upgrading of bio-oil from biomass fast pyrolysis in China: A review’, Renew. Sustain. Energy Rev., vol. 24, pp. 66–72, Aug. 2013, doi: 10.1016/j.rser.2013.03.027.

D. Santi, T. Triyono, W. Trisunaryanti, and I. Izul Falah, ‘Hydrocracking of pyrolyzed α-cellulose to hydrocarbon over MxOy/ Mesoporous carbon catalyst (M = Co and Mo): Synthesis and characterization of carbon-based catalyst support from saw waste of Merbau wood’, J. Environ. Chem. Eng., vol. 2020, no. 8, Feb. 2020.

S. R. Khan and M. Zeeshan, ‘Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tires’, Energy, vol. 238, p. 121820, Jan. 2022, doi: 10.1016/j.energy.2021.121820.

S. Wibowo, L. Efiyanti, and G. Pari, ‘Catalytic and Thermal Cracking of Bio-Oil from Oil-Palm Empty Fruit Bunches, in Batch Reactor’, Indones. J. Chem., vol. 20, no. 5, p. 1000, Jul. 2020, doi: 10.22146/ijc.44076.

D. Paul, N. Kasera, P. Kolar, and S. G. Hall, ‘Physicochemical characterization data of pine-derived biochar and natural zeolite as precursors to catalysts’, Chem. Data Collect., vol. 30, p. 100573, Dec. 2020, doi: 10.1016/j.cdc.2020.100573.

R. I. Kusuma, J. P. Hadinoto, A. Ayucitra, F. E. Soetaredjo, and S. Ismadji, ‘Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil’, Appl. Clay Sci., vol. 74, pp. 121–126, Apr. 2013, doi: 10.1016/j.clay.2012.04.021.

R. Saab, K. Polychronopoulou, L. Zheng, S. Kumar, and A. Schiffer, ‘Synthesis and performance evaluation of hydrocracking catalysts: A review’, J. Ind. Eng. Chem., vol. 89, pp. 83–103, Sep. 2020, doi: 10.1016/j.jiec.2020.06.022.

M. Hosseinpour, M. Soltani, A. Noofeli, and J. Nathwani, ‘An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM)’, Fuel, vol. 271, p. 117618, Jul. 2020, doi: 10.1016/j.fuel.2020.117618.

E. Saputra and S. Bahri, ‘Bio-Oil dari Limbah Padat Sawit dengan Metoda Pirolisa’, Nat. Indones., vol. 11, no. 2, pp. 124–128, 2015.

A. Zoghlami and G. Paës, ‘Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis’, Front. Chem., vol. 7, p. 874, Dec. 2019, doi: 10.3389/fchem.2019.00874.

N. Hidayah and I. U. Wusko, ‘Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo’, Maj. Obat Tradis., vol. 25, no. 3, Dec. 2020, doi: 10.22146/mot.52715.

M. F. P. Ferreira, B. F. H. Oliveira, W. B. S. Pinheiro, N. F. Correa, L. F. França, and N. F. P. Ribeiro, ‘Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products’, Biomass Bioenergy, vol. 140, p. 105707, Sep. 2020, doi: 10.1016/j.biombioe.2020.105707.

M. Pan, ‘Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil’, J. Catal., p. 14, 2019.

O. Cadar, M. Senila, M.-A. Hoaghia, D. Scurtu, I. Miu, and E. A. Levei, ‘Effects of Thermal Treatment on Natural Clinoptilolite-Rich Zeolite Behavior in Simulated Biological Fluids’, Molecules, vol. 25, no. 11, p. 2570, May 2020, doi: 10.3390/molecules25112570.

J. G. Speight, Handbook of petroleum refining. Boca Raton: CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group an informa business, 2017.

J. A. Porter and J. E. G. Lipson, ‘The effect of density on the properties of short chain fluids’, J. Chem. Phys., vol. 122, no. 9, p. 094906, Mar. 2005, doi: 10.1063/1.1851509.

E. C. Efika, J. A. Onwudili, and P. T. Williams, ‘Products from the high temperature pyrolysis of RDF at slow and rapid heating rates’, J. Anal. Appl. Pyrolysis, vol. 112, pp. 14–22, Mar. 2015, doi: 10.1016/j.jaap.2015.01.004.

S. Wang, G. Dai, H. Yang, and Z. Luo, ‘Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review’, Prog. Energy Combust. Sci., vol. 62, pp. 33–86, Sep. 2017, doi: 10.1016/j.pecs.2017.05.004.

M. S. Mettler, A. D. Paulsen, D. G. Vlachos, and P. J. Dauenhauer, ‘Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass’, Energy Environ. Sci., vol. 5, no. 7, pp. 7864–7868, Jun. 2012, doi: 10.1039/C2EE21305B.


  • There are currently no refbacks.


Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.32 Indralaya 30662
Phone: +62-711-580269


Creative Commons License
IJFAC by Department of Chemistry Sriwijaya University is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License