Characterization of Electrode with Cu2O-ZnO/C and Pt-Ru/C Catalyst for Electrochemical Reduction CO2 to CH3OH

Dea Radestia Rahmah, Dedi Rohendi, Nirwan Syarif, Addy Rachmat, Nyimas Febrika Sya'baniah, Dwi Hawa Yulianti

Abstract


Electrode characterization has been carried out with Cu2O-ZnO/C and Pt-Ru/C catalysts to convert carbon dioxide to methanol. Characterization are carried out with XRD analysis, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The electrodes are made by distributing Cu2O-ZnO/C and/or Pt-Ru/C catalyst by spraying method. The results of XRD analysis showed that the characteristic peak of platinum was 2θ = 39.7⁰ - 40.74⁰ with an intensity of 970 cps and 1384 cps and the diffraction peak of Ru oxide was found at 47.02⁰ with an intensity of 923 cps. The peak of Cu2O characteristics appeared at 36.12⁰ with an intensity of 88 cps and the peak for ZnO characteristics at 68.2⁰ with an intensity of 13 cps. The test results with the cyclic voltammetry method showed that the electrode with a Cu2O-ZnO/C catalyst obtained the highest ECSA value which was 26.044 cm2/g, with an electrical conductivity value of 3.4 x 10-3 S/cm and a total real resistance of 5.9425 Ω .


Full Text:

Full Text PDF

References


H. P. Yang, Y. N. Yue, S. Qin, H. Wang, and J. X. Lu, “Selective electrochemical reduction of CO2 to different alcohol products by an organically doped alloy catalyst,” Green Chem., vol. 18, no. 11, pp. 3216–3220, 2016, doi: 10.1039/c6gc00091f.

K. Atsonios, K. D. Panopoulos, and E. Kakaras, “Thermocatalytic CO2 hydrogenation for methanol and ethanol production : Process improvements,” Int. J. Hydrogen Energy, pp. 1–15, 2015, doi: 10.1016/j.ijhydene.2015.12.001.

G. Zeng, J. Qiu, Z. Li, P. Pavaskar, and S. B. Cronin, “CO2 reduction to methanol on TiO2-passivated GaP photocatalysts,” ACS Catalysis, vol. 4, no. 10. pp. 3512–3516, 2014, doi: 10.1021/cs500697w.

E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, “Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell,” J. Am. Chem. Soc., vol. 130, no. 20, pp. 6342–6344, 2008, doi: 10.1021/ja0776327.

S. Schlager, L. M. Dumitru, M. Haberbauer, A. Fuchsbauer, H. Neugebauer, D, Hiemetsberger, A. Wagner, E. Portenkirchner, and N. S. Sariciftci, “Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode,” ChemSusChem, vol. 9, no. 6, pp. 631–635, 2016, doi: 10.1002/cssc.201501496.

K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, and T. F. Jaramillo, “Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces,” J. Am. Chem. Soc., vol. 136, no. 40, pp. 14107–14113, 2014, doi: 10.1021/ja505791r.

C. Jones, E. Robertson, V. Arora, P. Friedlingstein, E. Shevliakova, L. Bopp, V. Brovkin, T. Hajima, E. Kato, M. Kawamiya, S. Liddicoat, K. Lindsay, C. H. Reick, C. Roelandt, J. Segschneider, and J. Tjiputra, “Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways,” J. Clim., vol. 26, no. 13, pp. 4398–4413, 2013, doi: 10.1175/JCLI-D-12-00554.1.

S. Shironita, K. Karasuda, K. Sato, and M. Umeda, “Methanol generation by CO2 reduction at a Pt-Ru/C electrocatalyst using a membrane electrode assembly,” J. Power Sources, vol. 240, pp. 404–410, 2013, doi: 10.1016/j.jpowsour.2013.04.034.

M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz, and J. C. Flake, “Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces,” vol. 158, no. 5, pp. 45–49, 2011, doi: 10.1149/1.3561636.

L. M. Aeshala, R. G. Uppaluri, and A. Verma, “Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel,” J. CO2 Util., vol. 3–4, pp. 49–55, 2013, doi: 10.1016/j.jcou.2013.09.004.

J. Albo, G. Beobide, P. Castaño, and A. Irabien, “Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions,” J. CO2 Util., vol. 18, pp. 164–172, 2017, doi: 10.1016/j.jcou.2017.02.003.

J. Hazarika and M. S. Manna, “Electrochemical reduction of CO2 to methanol with synthesized Cu2O nanocatalyst: Study of the selectivity,” Electrochim. Acta, vol. 328, p. 135053, 2019, doi: 10.1016/j.electacta.2019.135053.

J. Albo and A. Irabien, “Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol,” J. Catal., 2015, doi: 10.1016/j.jcat.2015.11.014.

R. Venka, “Design and Development of Electrochemical Cell for Converting Carbon Dioxide to Useful Fuel,” Arizona State University, 2016.

M. Sassenburg, “Conducting CO2 reduction at a bipolar membrane electrode assembly,” 2018.

D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, and B. Han, “Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts,” Nat. Commun., vol. 10, no. 1, pp. 1–9, 2019, doi: 10.1038/s41467-019-08653-9.

N. Gutiérrez-Guerra, L. Moreno-López, J. C. Serrano-Ruiz, J. L. Valverde, and A. de Lucas-Consuegra, “Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes,” Appl. Catal. B Environ., vol. 188, pp. 272–282, 2016, doi: 10.1016/j.apcatb.2016.02.010.

H. A. Huy, T. Van Man, H. T. Tai, and H. T. T. Van, “Preparation and characterization of high-dispersed Pt/C nano-electrocatalysts for fuel cell applications.,” J. Sci. Technol., vol. 54, no. 4, 2016, doi: 10.15625/0866-708x/54/4/7308.

R. Chetty, W. Xia, S. Kundu, M. Bron, T. Reinecke, W. Schuhmann, and M. Muhler, “Effect of reduction temperature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes,” Langmuir, vol. 25, no. 6, pp. 3853–3860, 2009, doi: 10.1021/la804039w.

A. B. Kashyout, A. B. A. A. Nassr, L. Giorgi, T. Maiyalagan, and B. A. B. Youssef, “Electrooxidation of methanol on carbon supported Pt-Ru nanocatalysts prepared by ethanol reduction method,” Int. J. Electrochem. Sci., vol. 6, no. 2, pp. 379–393, 2011.

S. K. Baek, K. R. Lee, and H. K. Cho, “Oxide p-n heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/421371.

I. Sakellis, S. Giamini, I. Moschos, C. Chandrinou, A. Travlos, C.Y. Kim, J. J. Lee, J. G. Kim, and N. Boukos, “A novel method for the growth of Cu2O/ZnO heterojunctions,” Energy Procedia, vol. 60, no. C, pp. 37–42, 2014, doi: 10.1016/j.egypro.2014.12.339.

H. Liu, Z. Hu, R. Hu, B. Liu, H. Ruan, L. Zhang, and W. Xiao, “Large-scale synthesis of Cu2O nanocubes and their electrochemical properties,” Int. J. Electrochem. Sci., vol. 11, no. 4, pp. 2756–2761, 2016, doi: 10.20964/110402756.

X. Teng, C. Sun, J. Dai, H. Liu, J. Su, and F. Li, “Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application,” Electrochim. Acta, vol. 88, pp. 725–734, 2013, doi: 10.1016/j.electacta.2012.10.093.

C. Jackson, “Preparation and Characterisation of Pt-Ru/C Catalysts for Direct Methanol Fuel Cells,” University of Cape Town, 2014.

T. Lestariningsih, Q. Sabina, and N. Majid, “Penambahan TiO2 dalam Pembuatan Lembaran Polimer Elektrolit Berpengaruh Terhadap Konduktivitas dan Kinerja Baterai Lithium,” J. Mater. dan Energi Indones., vol. 7, no. 1, pp. 31–37, 2017.

D. A. Stevens and J. R. Dahn, “Electrochemical Characterization of the Active Surface in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells,” J. Electrochem. Soc., vol. 150, no. 6, p. A770, 2003, doi: 10.1149/1.1573195.

B. Pranoto, V. J. Wargadalam, H. A. Al-Rasyid, “Catalyst Coating On Fuel Cell Of MEA Fabrication Process Type PEM,” vol. 12, no. 1, pp. 21–34, 2013.

L. romaida Samosir, “Analisis Sifat Elektrokimia dan Karakteristik Pvdf-Hfp/Libob dan Pvdf-Hfp/Litfsi sebagai Elektrolit Padat pada Baterai Litium Coin Cell,” Universitas Sumatera Utara, 2019.

M. Dzulqornain, “Sintesis Composite Polymer Electrolyte dari Polyvinylidene Fluoride-Hexafluoropropylene (PVDF-HFP) dan Lithium Carbonate (Li2CO3) Untuk Baterai Lithium,” Institut Pertanian Bogor, 2018.

S. Achmad, E. Suwandi, Ramlan, and T. H. Utama, “Efek Penambahan Bahan Aditif MWCNT Dan Acetylene,” Univ. Sriwij., vol. 16, no. 2, pp. 49–54, 2015.

A. J. Martín, G. O. Larrazábal, and J. Pérez-Ramírez, “Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: Lessons from water electrolysis,” Green Chem., vol. 17, no. 12, pp. 5114–5130, 2015, doi: 10.1039/c5gc01893e.




DOI: http://dx.doi.org/10.24845/ijfac.v6.i1.08

Refbacks

  • There are currently no refbacks.


 

Editorial Office:

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya
Jl. Palembang-Prabumulih Km.35 Indralaya Ogan Ilir Sumatera Selatan 30662

 

 

Creative Commons License
IJFAC by Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License