Comparison Study of PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH: Characterization and Application for [AuCl₄]⁻ Removal from Solution

Lutfi Aditya Hasnowo¹*, Sri Juari Santosa², Bambang Rusdiarso²

¹Department of Nuclear Chemical Engineering, Politechnic Institute of Nuclear Technology, Yogyakarta, Indonesia.
²Department of Chemistry, Faculty of Mathematic and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

*Corresponding Author: lutfi.aditya@batan.go.id

Abstract

Synthesis of \(p \)-hydroxybenzoic acid (PHBA)-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH had been conducted. PHBA-intercalated Mg/Al-LDH hybrid was synthesized by co-assembly process of Mg/Al-LDH nanosheets and PHBA anions. PHBA-immobilized Mg/Al-LDH was prepared by indirect synthesis, where PHBA anions were attached on surface of the Mg/Al-LDH material. X-ray Diffraction result showed that the PHBA-intercalated Mg/Al-LDH hybrid has the lattice parameter of \(a=3.02 \, \text{Å}, \, c=46.77 \, \text{Å} \) and basal spacing \(d_{003}=15.14 \, \text{Å} \), where PHBA has been intercalated in interlayer of the hybrid. The PHBA-immobilized Mg/Al-LDH has lattice parameter of \(a=3.06 \, \text{Å}, \, c=23.70 \, \text{Å} \) and basal spacing \(d_{003}=7.90 \, \text{Å} \). The result confirmed that PHBA attached on surface of the hybrid for PHBA-immobilized Mg/Al-LDH. The optimum 10 mL of [AuCl₄]⁻ 100 mg L⁻¹ removal condition of both hybrids were reached at pH 3. The optimum interaction time of [AuCl₄]⁻ and PHBA-intercalated Mg/Al-LDH hybrid was 250 minutes, respectively, while that for [AuCl₄]⁻ and PHBA-immobilized Mg/Al-LDH was 150 minutes. Removal of [AuCl₄]⁻ by PHBA-intercalated Mg/Al-LDH hybrid followed pseudo second order kinetic, whereas by PHBA-immobilized Mg/Al-LDH followed pseudo first order kinetic. Characterization using stereo photomicroscope confirmed that [AuCl₄]⁻ could be reduced to Au metal by both hybrids.

Keywords: Layered double hydroxide, \(p \)-hydroxybenzoic acid, hybrid material, [AuCl₄]⁻ removal

Abstrak (Indonesian)

Telah dilakukan sintesis material hibrida Mg/Al-LDH terinterkalasi asam para hidroksibenzoat (APHB) dan Mg/Al-LDH terimobilisasi APHB serta penerapannya untuk penghilangan [AuCl₄]⁻ dari larutan. Mg/Al-LDH terinterkalasi APHB disintesis melalui proses co-assembly nanosheet Mg/Al-LDH dan APHB. Mg/Al-LDH terimobilisasi APHB disintesis secara tidak langsung dimana APHB diadsorpsikan pada material Mg/Al-LDH. Hasil menunjukkan hibrida Mg/Al-LDH terinterkalasi APHB mempunyai nilai parameter kisi a, c dan basal spacing \(d_{003} \) masing-nasing sebesar 3,02; 46,77; dan 15,14 \, \text{Å} \) dimana APHB berada di daerah antar lapis hibrida. Nilai parameter kisi a, c dan basal spacing \(d_{003} \) hibrida Mg/Al-LDH terimobilisasi APHB masing-masing 3,06; 23,70; dan 7,90 \, \text{Å} \) dimana APHB berada di permukaan luar lapisan hibrida. Penghilangan 10 mL larutan [AuCl₄]⁻ 100 mg/L oleh 10 mg kedaunya material optimum pada pH 3 dan waktu kontak 250 menit untuk Mg/Al-LDH terinterkalasi APHB, sedangkan pada Mg/Al-LDH terimobilisasi APHB optimum pada pH 3 dan waktu kontak 150 menit. Penghilangan [AuCl₄]⁻ oleh material Mg/Al-LDH terinterkalasi APHB mengikuti kinetika pseudo orde kedua, sedangkan oleh material Mg/Al-LDH terimobilisasi APHB mengikuti pseudo orde pertama. Hasil fotomikroskop stereo menunjukkan bahwa [AuCl₄]⁻ telah tereduksi oleh kedaunya hibrida menjadi logam Au.

Kata Kunci: Hidroksida ganda terlapis, asam \(p \)-hidroksibenzoat, material hibrida, penghilangan [AuCl₄]⁻
INTRODUCTION

In recent, Layered Double Hydroxides (LDH) have attracted a great attention because of their layered structure and high anion exchange capacity, which can make various technical applications [1-4]. LDH compounds are a class of anionic clays which can be represented by the general formula of [M$_{2+1-x}$M$_{3+x}$(OH)$_2$]$^{x+}$[A$_n^-$]$_{x/n}$mH$_2$O, where M$^{2+}$ and M$^{3+}$ are tri- and divalent metal ions, and A$^-$ is the exchangeable anions [5-7]. LDH compounds are the only known inorganic materials with positive layer charge, their structural units are made from stacks of positively charged octahedral sheets of ([M$_{2+1-x}$M$_{3+x}$(OH)$_2$]$^{x+}$) and the corresponding anions (A$^-$) as well as water molecules. The positive charge is due to substitution of M$^{2+}$ with M$^{3+}$ in the brucite-like metal hydroxide M(OH)$_2$ and is balanced by the negative charge (A$^-$) from the interlayer anions. Meanwhile, various amounts of water (mH$_2$O) are hydrogen bonded to the hydroxide layers or to the interlayer anions, forming the 3D layered structure [7,8].

There are increasing interests in using LDHs, because of their utilization as adsorbent. LDH potentially have high capability for adsorption. LDH’s adsorption ability is supported by their high anion exchange and surface area [9,10]. In order to enhance the effectiveness of their adsorption capability, many researchers have modified LDHs by various ways. There are some LDH modification techniques, but surfaces and galleries modifications were more often conducted.

In the LDH structure, some of the M$^{2+}$ ions are replaced by M$^{3+}$ ions, resulting in positively charged layers [9]. Although this charge is compensated by interlayer anions, the layer surface of the LDH can still electrostatically interact with negatively charged foreign species, so, a modifier can be immobilized on the LDH surface. On the other hand, LDH can also as hosts for nanoscale reactions especially remarked as a template for the creation of intercalated supramolecular arrays [11,12].

Many different anions can be intercalated into the interlayer space, and their species can vary to cater to different needs. As for the diversity of organic materials and their particular structural features, organic anion intercalated LDH have aroused peculiar interest [12].

As adsorbent, LDH modifications are not only to enhance the adsorption capability but also can appear new properties of the LDH. Selection of substance to be a modifier is important because it is tailored to the desired final capability of the composite material. p-hydroxybenzoic acid (PHBA) is a benzoic acid derivative which has a hydroxyl (-OH) group bound to the aromatic ring. The presence of a hydroxyl group on PHBA causes it can be a reductor. PHBA has a reduction potential value of -0.5037 V.

PHBA study as a reducing agent was conducted by Maghfiroh (2015), where PHBA was used as a reducing agent for AgNO$_3$ to Ag(0) [13]. The result showed that PHBA was the best reductor in reducing Ag(I) to Ag (0) compared to hydroxybenzoic acid and gallic acid. The reduction potential value of Ag(I) is +0.8000 V while [AuCl$_4$]$^-$ is +1.002 V [14]. The reduction potential value of [AuCl$_4$]$^-$ is more positive than AgNO$_3$, so that it is expected that [AuCl$_4$]$^-$ can be reduced more easily by PHBA.

The synthesis of two types of compounds, namely Mg/Al-LDH and PHBA, is expected to form a new hybrid material which has a double ability in the removal process [AuCl$_4$]$^-$. This new hybrid material can not only adsorb but can also reduce [AuCl$_4$]$^-$ to Au metal.

In this study, PHBA-intercalated Mg/Al-LDH hybrid material was synthesized and then used for the removal process [AuCl$_4$]$^-$ in solution. Before being intercalated by PHBA, Mg/Al-LDH nanosheet was synthesized first with a "bottom-up" approach through an alternative co-precipitation method. The formed Mg/Al-LDH was then intercalated by PHBA via co-assembly process. In addition, the synthesis of PHBA-immobilized Mg/Al-LDH hybrid material was also carried out as a comparative hybrid material. PHBA-immobilized Mg/Al-LDH hybrid material was synthesized through indirect synthesis. The application of the two hybrid materials, namely PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH in the removal process [AuCl$_4$]$^-$ in solution was studied by determining the effect of pH of solution and interaction time.

MATERIALS AND METHODS

Materials

All chemicals - Mg(NO$_3$)$_2$·6H$_2$O, Al(NO$_3$)$_3$·9H$_2$O, NaOH, and HCl were purchased from Merck Co. Inc., Germany, NH$_3$·H$_2$O and p-hydroxybenzoic acid were purchased from Sigma-Aldrich and nitrogen sufficiently high purity (99.99%) was purchased from CV Perkasa (Indonesia) - are of analytical grade and used as received without further purification. [AuCl$_4$]$^-$ solution (HAuCl$_4$) was prepared by dissolving of gold (99.99%) in aqua regia solution. Gold (99.99%) were purchase from PT. ANTAM Indonesia.

Synthesis process

A two-step process was performed to synthesize the target samples. In the first step, Mg/Al-LDH
nanesheets were synthesized as follows [15] A mixture of salts (Mg²⁺ + Al³⁺) 0.3 mol/L with a molar ratio of 2:1 was prepared by 1.026 g (4 mmol) Mg (NO₃)₂·6H₂O and 0.750 g (2 mmol) Al (NO₃)₃·9H₂O dissolved in CO₂ free distilled water 20 mL. An alkali solution (~7 wt%) was prepared by diluting NH₃·H₂O solution (25 wt%) with water. These two solutions were injected into the T type microchannel reactor through two inlets using a peristaltic pump, each at a flow rate of 20 mL/min. Furthermore, the resulting suspension was collected at the reactor outlet and filtered by Millipore 0.8 μm to remove the supernatant. The precipitate was washed three times with distilled water by re-dispersion, yielding gel-like Mg/Al-LDH nanosheets.

In addition, PHBA-immobilized Mg/Al-LDH hybrid material was synthesized through indirect synthesis. First, a pristine Mg/Al–LDH in bulky state (three dimension) was prepared by the typical coprecipitation method. Amount of 12.821 g (0.05 mol) Mg (NO₃)₂·6H₂O and 9.378 g (0.025 mol) Al (NO₃)₃·9H₂O, were dissolved in 100 mL of distilled water. NaOH 0.5 M was added dropwise to the solution until reaches pH 10. The resulting solution was continued with stirring for 30 under N₂ atmosphere. The mixture was then hydrothermally treated at 120°C for 5 hours. The suspension was filtered, washed and then dried at 70°C until constant weight was achieved, yielding pristine Mg/Al–LDH.

Then, 0.01 g of pristine Mg/Al–LDH was interacted with 10 mL of 100 mg/L PHBA solution. In the tests, the pH in the starting mixtures was set at 8 and then the mixture was shaken for 90 min. After being shaken, the dispersion was filtered through Whatman filter and the remaining PHBA in the filtrate was determined spectroscopically using UV–Vis spectrophotometer (UV-Vis, Shimadzu UV-1800 pharmspec).

Effect of medium acidity on reductive adsorption of [AuCl₄]⁻

Ten milligram of PHBA-intercalated Mg/Al-LDH was added into every 10 mL of [AuCl₄]⁻ 100 mg/L solutions at pH 2, 3, 5, 7, 9 and 11. The mixed solutions were then stirred for 90 min, filtered and the remaining [AuCl₄]⁻ in the filtrate was determined using AAS. As a comparison, the same experiment was conducted for PHBA-immobilized Mg/Al-LDH.

Effect of interaction time on reductive adsorption of [AuCl₄]⁻

Into a series of flasks containing 10 mL of [AuCl₄]⁻ 100 mg/L solutions at optimum pH obtained from the above experiment, 10 mg of PHBA-intercalated Mg/Al-LDH was added. The flasks were then subjected to continuous stirring at contact times 0, 10, 20, 30, 60, 90, 120, 150, 200, 250, 300 and 350 min. At each selected contact time, a sample from the respective flask was immediately taken, filtered through a Whatman 42 filter and the remaining concentration of [AuCl₄]⁻ in the filtrate was analyzed by AAS. The same experiment was repeated but instead of PHBA-immobilized Mg/Al-LDH was used.

Stability of p-hydroxybenzoic acid on Mg/Al-LDH

To test the stability of the PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH, it was necessary to test the desorption of the two hybrid materials into 10 mL of distilled water by adjusting the pH variation of distilled water. The pH of the distilled water was adjusted to variations of pH 2, 3, 5, 7, 9, and 11. 0.010 g of each hybrids material was added to each aquadest which had been adjusted and then shaken it for 90 minutes. After separating supernatant from the solid, the content of dissolved PHBA in supernatant was determined spectroscopically at wavelength giving maximum absorption.

RESULTS AND DISCUSSION

XRD analysis

The XRD pattern results show that all formed materials were layered materials. This was indicated by the appearance of Bragg Mg/Al-LDH diffraction peaks
clearly in low-angle range [14]. In addition, there was also a diffraction peak (110) at 2θ angle 61° in all of these materials. This peak was characteristic of lattice parameter. The clear difference seen in Figure 1 was that there were shifts in basal spacing \(d_{003}\) of the two hybrid materials than pristine Mg/Al-LDH. Based on Table 1, there was a decrease in basal spacing \(d_{003}\) of PHBA-immobilized Mg/Al-LDH although it was not too significant, i.e. from 8.11 Å to 7.90 Å. Based on these data it could be said that PHBA was only on the surface of PHBA-immobilized Mg/Al-LDH and did not enter the inter-layer area. The reduction in basal spacing \(d_{003}\) Mg/Al-LDH was possible because PHBA has hydrophilic properties which makes it able to interact well with H\(_2\)O. This could be the driving force of the PHBA to attract H\(_2\)O molecules in the inter-layer area thereby reducing the basal spacing value \(d_{003}\) Mg/Al-LDH.

![Figure 1. Powder XRD pattern of (a) Mg/Al-LDH, (b) PHBA-intercalated Mg/Al-LDH, and (c) PHBA-immobilized Mg/Al-LDH.](image)

A different phenomenon was seen in the PHBA-intercalated Mg/Al-LDH. The peak shift occurred towards a smaller angle than pristine Mg/Al-LDH indicating PHBA anion had entered to the area between the Mg/Al-LDH layers. This was due to the size of the molecular diameter of the PHBA anion which was larger than the NO\(_3\)- and the H\(_2\)O molecules which should fill the area between layers of Mg/Al-LDH. Based on theory we could estimate the size of the inter-layer distance (basal spacing value \(d_{003}\) = the thickness of the Mg/Al-LDH layer + the size of the distance between the Mg/Al-LDH regions). The thickness of the Mg/Al-LDH layer is the average distance between hydroxide to hydroxide in different fields in the brucite like layer, which is 4.70 Å [16]. According to the size of the distance between layers of the synthesized material was 10.44 Å (PHBA-intercalated Mg/Al-LDH) and 3.20 Å (PHBA-immobilized Mg/Al-LDH). The measurement of the distance between the layers could be used as an indication that the PHBA anion measuring 6.35 Å has entered to the galleries area of the PHBA-intercalated Mg/Al-LDH. Whereas in the PHBA-immobilized Mg/Al-LDH material, PHBA was only on the surface and did not enter the interlayer area.

<table>
<thead>
<tr>
<th>Material</th>
<th>(d_{003}) (Å)</th>
<th>c (Å)</th>
<th>a (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHBA-intercalated Mg/Al-LDH</td>
<td>15.14</td>
<td>46.77</td>
<td>3.02</td>
</tr>
<tr>
<td>PHBA-immobilized Mg/Al-LDH</td>
<td>7.90</td>
<td>23.70</td>
<td>3.06</td>
</tr>
<tr>
<td>Mg/Al-LDH</td>
<td>8.11</td>
<td>24.33</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Mg/Al-LDH has a unit cell structure in the form of rhombohedral \(R-3m\) with an octahedral system [17], where the \(a\) and \(c\) lattice parameter values of the material can be found from the basal spacing \(d_{003}\) and \(d_{110}\) basal spacing values. The two XRD diffractograms showed the appearance of diffraction peaks (110) at an angle of 2θ which was not much different, namely 61.35° (PHBA-intercalated Mg/Al-LDH) and 60.29° (PHBA-immobilized Mg/Al-LDH). The position of the diffraction peak (110) can indicate the lattice parameter value of the Mg/Al-LDH material, where lattice parameter \(a = 2d_{110}\), so that the lattice parameter \(a\) of each material is 3.02 Å (PHBA-intercalated Mg/Al-LDH) and 3.06 Å (PHBA-immobilized Mg/Al-LDH).

The lattice parameter \(a\) on Mg/Al-LDH material shows the distance between two adjacent hydroxide groups on the same side of the layer or shows the distance between the closest metal ions present in the Mg/Al-LDH layer. Information on the \(c\) lattice parameters of the two materials can be obtained from the basal spacing value \(d_{003}\), where the lattice parameter \(c = 3d_{003}\), so that the value of the \(c\) lattice parameter of PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH are respectively 46.42 Å and 23.70 Å. The lattice parameter \(c\) in Mg/Al-LDH shows the same layer-dependent distance in rhombohedral \(R-3m\) unit structure.

FT-IR analysis

FTIR spectra for the two hybrid materials in comparison with pristine Mg/Al-LDH were illustrated in Figure 2. Peaks around 447.32 cm\(^{-1}\) was found in all samples associated with Mg-O-Al bonds. Several other absorption peaks below 1000 cm\(^{-1}\) also appeared to be
associated with Mg-OH and Al-OH bond[18]. Figure 2 showed decrease in absorption peaks in 3447.18 cm$^{-1}$ which shows reduction in the hydroxyl group on the surface of Mg/Al-LDH and from H$_2$O molecules found in the inter-layer region. These indicated that adsorption has occurred on the surface of Mg/Al-LDH so that the amount of -OH was decreased. Reduction of absorption peak intensity also occurred in overtone absorption of nitrate ions at wave number 1383 cm$^{-1}$ which is expected to be a change in nitrate ions which might have been protonated into nitric acid which dissolve in water [19].

Figure 2 also shows the emergence of new peaks at several wavenumber. FT-IR spectra for two hybrid materials showed the existence of functional groups of the hydroxybenzoic acids, such as the absorption peaks at wave numbers around 1541 and 1612 cm$^{-1}$, which were respectively the aromatic ring C-C stretching and the R-COO asymmetrical stretching vibration of the PHBA. At 1169 cm$^{-1}$ was also recorded absorption peak which estimated to be a C-O stretching vibration from the PHBA.

The difference in absorption peak intensity between the two hybrid materials appears in wave numbers around 1383 and 3448 cm$^{-1}$. The absorption peak around wave number 1384 cm$^{-1}$ was N-O stretching vibration of the NO$_3$ anion that was in the intergroup area of Mg/Al-LDH, while the wave number around 3447 cm$^{-1}$ was the OH stretching vibration of the hydroxy group at surface (layer plane) Mg/Al-LDH and water molecules that exist in the inter-layer area. The difference in absorption peak intensity occured because in PHBA-intercalated Mg/Al-LDH material there was a change of species in the inter-layer area where nitrate and molecular anions were replaced by PHBA anions, so the intensity which was characteristic of nitrate anions and H$_2$O molecules has a significant decrease [20-22].

In PHBA-immobilized Mg/Al-LDH, PHBA anion was only on the surface (plane layer) of Mg/Al-LDH so that there were still many nitrate anions and H$_2$O molecules in the inter-layer area. The difference in intensity was also seen at the peak of absorption at wave numbers around 1542 and 1612 cm$^{-1}$, which were respectively the aromatic ring C-C stretching absorption and the R-COO asymmetry stretching vibration of the PHBA anion.

In PHBA-intercalated Mg/Al-LDH, there were atomic absorptions at around 1276 and 1252 cm$^{-1}$ which were C-O stretching vibrations from carboxylic groups and COH bending vibrations of phenol groups from PHBA, whereas in hybrid Mg/Al-LDH materials immobilized PHBA did not appear. This showed that the PHBA anion has interacted more in the PHBA intercalated Mg/Al-LDH hybrid material than in the PHBA-immobilized Mg/Al-LDH. In both materials was visible peaks peak at wave numbers around 1170 cm$^{-1}$ estimated to be a vibration stretching C-O phenol group from PHBA [21-23].

Stability of p-hydroxybenzoic acid on PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH

Figure 3 shows the stability of PHBA-intercalated on Mg/Al-LDH at various pH mediums. Stability of the intercalated PHBA towards dissolution was excellent from pH 3.0 to 9.0, i.e. at the level 99.36 ± 0.33 %. In mediums with extreme acidity and alkalinity levels, stability of PHBA on Mg/Al-LDH was degraded to the value 89.72 and 89.27 % at pH 2.0 and 11.0, respectively. In the case of immobilized PHBA, its stability was 95.99 ± 3.04 % in the pH range 3.0 to 9.0 and then it degraded to the value 40.15 and 51.67 % at pH 2.0 and 11.0.

At the high acidity level of the medium, the hydroxyl group of the hybrid was protonated and the metal bonds were broken so that the metal cations dissolve. The dissolution of the cations was also accompanied by the release of PHBA in solution. While at high alkalinity level (pH 11), the released APhB was relatively high. This is because at high alkalinity level, amount of OH$^-$ anion classified as a hard base in the solution is in large amounts, so that the cations Mg$^{2+}$ and Al$^{3+}$ classified as hard acids will prefer to interact with OH$^-$ anion than PHBA anion.
This results in the PHBA anions being depleted in solution.

Figure 3. Effect of pH to stability of (a) PHBA-intercalated Mg/Al-LDH and (b) PHBA-immobilized Mg/Al-LDH

This result showed that PHBA-intercalated Mg/Al-LDH was relatively more stable than PHBA-immobilized Mg/Al-LDH. This phenomenon occurred because in PHBA-intercalated Mg/Al-LDH, PHBA was dominant in the gallery and was protected by Mg/Al-LDH as the material host.

Effect of medium acidity on reductive adsorption of \([AuCl_4]^-\)

Figure 4 shows that medium acidity greatly affects the removal of \([AuCl_4]^-\) by PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH. At high acidity levels of the medium (pH 2), the removal ability of \([AuCl_4]^-\) by two hybrid materials was very low, because in pH under the hydroxyl group of the two materials was protonated and Mg or Al bonds were broken so that the metal cations dissolve. The dissolution of the cations was also accompanied by the release of PHBA in solution, resulting in a low removal of \([AuCl_4]^-\).

\([AuCl_4]^-\) optimum removal occurs at medium pH 3. The higher the pH value, the lower the removal of \([AuCl_4]^-\) by the materials. This was related to the pH\(_{PZC}\) Mg/Al-LDH value reported by Martin et al (1999) was 12, so that at pH conditions 3 to 11, the positive charge level on Mg/Al-LDH tended to decrease, resulting in adsorption of \([AuCl_4]^-\) charged negative decreases [23]. \([AuCl_4]^-\) was dominant at pH lower than 4.5 and gradually changes to \([Au(OH)_x]^+\) with the increasing pH [24-26].

Figure 4. Effect of medium acidity on reductive adsorption of \([AuCl_4]^-\) by PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH

In the medium pH 3 gold was dominant as \([AuCl_4]^-\), so the \([AuCl_4]^-\) removal process can take place optimally. In addition, in process of removal of \([AuCl_4]^-\) by two hybrid materials were also reduction process in \([AuCl_4]^-\). The OH group of the hydroxybenzoic acid present in the material plays a role in reducing \([AuCl_4]^-\) to Au(0) and also did not rule out the OH group also played a role in the adsorption process \([AuCl_4]^-\). In the reductive adsorption process of \([AuCl_4]^-\), OH group in PHBA which was presented in Mg/Al-LDH was predicted to undergo oxidation. This phenolic compound when oxidized would produce a quinone [27-29].

Kinetic study of \([AuCl_4]^-\) removal

The ability of PHBA intercalated Mg/Al-LDH and PHBA immobilized Mg/Al-LDH to remove \([AuCl_4]^-\) was carried out at temperature 25°C and initial medium acidity equivalent to pH 3. To describe adsorption data obtained under non-equilibrium conditions, two kinetic models, namely the pseudo-first-order (PFO) and the pseudo-second-order (PSO)
were used [28-33]. The kinetic rate equations following PFO can be represented as:

\[
\frac{dq_t}{dt} = k_1(q_e - q_t)
\]

(1)

Where \(k_1\) is the rate constant.

Integrating Eq. (1) for boundary conditions \(t = 0\) and \(t = t\) and \(q_t = 0\) and \(q_t = q_e\), gives [32]:

\[
\log(q_e - q_t) = \log(q_e) - \frac{k_1}{2.303} t
\]

(2)

The constants can be determined experimentally by plotting of \(\log(q_e - q_t)\) against \(t\).

Likewise, the reductive adsorption of [AuCl\(_4\)]\(^-\) following PSO kinetics can be represented as

\[
\frac{dq_t}{dt} = k_2(q_e - q_t)^2
\]

(3)

Where \(k_2\) is the rate constant.

Integrating Eq. (3) for boundary conditions \(t = 0\) and \(t = t\) and \(q_t = 0\) and \(q_t = q_e\), gives [33]:

\[
q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}
\]

(4)

Eq. (4) can be linearized to linear forms as

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}
\]

(5)

The constants can be determined experimentally by plotting of \(t/q_t\) against \(t\).

Based on the results of the experiment shown in Figure 5, the equilibrium of removal of [AuCl\(_4\)]\(^-\) by PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH occurred at 250 and 150 minutes, respectively. Although their ability to remove [AuCl\(_4\)]\(^-\) is different from one another, the profiles of removal of [AuCl\(_4\)]\(^-\) by the two hybrid materials are similar. The removal of [AuCl\(_4\)]\(^-\) by the two adsorbents was initially rapid and began to slow down from the contact time of about 35 minutes. Rate constant of PFO and PSO for the removal of [AuCl\(_4\)]\(^-\) by PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH is shown in Table 2.

Interestingly, it was observed that the \(R^2\) value of the PFO from PHBA-immobilized Mg/Al-LDH was higher than and PHBA-intercalated Mg/Al-LDH, whereas the opposite trend prevailed for PSO. As previously thought, the number of PHBA in PHBA-intercalated Mg/Al-LDH material was more than in PHBA-immobilized Mg/Al-LDH. So, the number of active sites for [AuCl\(_4\)]\(^-\) increased. On the other hand, as previously indicated, PFO will prevail in conditions where the initial adsorbate concentration is much higher than the number of available adsorbent active sites [34-38].

![Figure 5. Effect of time on reductive adsorption of [AuCl\(_4\)]\(^-\) by PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH](image)

Table 2. Caption of table rate constant of PFO and PSO for the removal of [AuCl\(_4\)]\(^-\) on PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH

<table>
<thead>
<tr>
<th>No.</th>
<th>Kinetic Model</th>
<th>PHBA-intercalated Mg/Al-LDH</th>
<th>PHBA-immobilized Mg/Al-LDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pseudo-first-order (PFO)</td>
<td>1.0364</td>
<td>1.5199</td>
</tr>
<tr>
<td></td>
<td>(k_1) (10(^{-2}) min(^{-2}))</td>
<td>0.9593</td>
<td>0.9827</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.9596</td>
<td>0.9104</td>
</tr>
<tr>
<td>2.</td>
<td>Pseudo-second-order (PSO)</td>
<td>3.2778</td>
<td>3.3522</td>
</tr>
<tr>
<td></td>
<td>(k_1) (10(^{+4}) g/mg min)</td>
<td>3.2778</td>
<td>3.3522</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.9596</td>
<td>0.9104</td>
</tr>
</tbody>
</table>

The presence of Au (0) as a result of reduction process [AuCl\(_4\)]\(^-\) by PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH could be known by comparing the visual appearance of the two hybrid materials between before and after the removal process [AuCl\(_4\)]\(^-\) using a stereo photomicroscope as shown by Figure 6. Figure 6 (a) and (c) it could be observed that before the removal process of [AuCl\(_4\)]\(^-\), the surface of the two hybrid materials was pure white. In Figure 6 (c) and (d) it shows that Au metal has been formed which was seen in the stereo microscope photo as a shiny part covering the surface of the hybrid material.
which turns brown. The shiny color that occurs was the reflection of the microscope light hitting the gold metal surface [39]. This was because gold is a metal that has shiny physical properties, making it more shining when exposed to light.

CONCLUSION

Intercalation of PHBA to the interlayer area of Mg/Al-LDH was successfully done, identified through FTIR spectroscopy that there was the presence of C-C aromatic ring stretching vibrations, C-O stretching vibrations of carboxylate groups, R-COO asymmetry stretching vibration, C-O stretching vibration, C-O-H bending of phenol groups and decreased absorption peaks of NO (NO₃⁻) vibrations. Through the X-ray diffractometer there was a shift in the basal spacing \(d_{003}\) to a larger direction. Immobilization of PHBA on the surface of M /Al-LDH can be carried out using the indirect synthesis method, identified by means of FTIR spectroscopy the presence of C-C aromatic ring stretching vibrations, R-COO asymmetric stretching vibrations, and phenolic group C-O stretching vibrations from PHBA. Adsorption kinetics model for removal on removal of [AuCl₄]⁻ by PHBA-intercalated Mg/Al-LDH follows second-order pseudo kinetics with a constant value of \(3.2778 \times 10^{-4}\) g/mg.min while PHBA-immobilized Mg/Al-LDH follows a first-order pseudo kinetics model with a rate constant value of \(1.5199 \times 10^{-2}\) minutes⁻¹. PHBA-intercalated Mg/Al-LDH and PHBA-immobilized Mg/Al-LDH can be used to reductive adsorption process of Au (III) to Au (0) as evidenced by Au metal, which has been formed. These were seen in the stereomicroscope photo as a shiny part covering the surface of the hybrid material that turns brown. The shiny color that occurs was the reflection of the microscope light hitting the gold metal surface.

ACKNOWLEDGMENT

The financially support from the Ministry of Finance, Republic Indonesia, through the Indonesia Endowment Fund for Education (LPDP).

REFERENCES

